
Error-Latency-Aware Scale Management Compiler
for Fully Homomorphic Encryption

Yongwoo Lee

The Graduate School
Yonsei University

Department of Electrical and Electronic Engineering

Error-Latency-Aware Scale Management Compiler
for Fully Homomorphic Encryption

A Dissertation Submitted
to the Deparment of Electrical and Electronic Engineering

and the Graduate School of Yonsei University
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical and Electronic Engineering

Yongwoo Lee

June 2024

This certifies that the Dissertation
of Yongwoo Lee is approved.

Thesis Supervisor Prof. Hanjun Kim

Thesis Committee Member Prof. Won Woo Ro

Thesis Committee Member Prof. William Jinho Song

Thesis Committee Member Prof. Youngsok Kim

Thesis Committee Member Prof. Dongyoon Lee

The Graduate School
Yonsei University

June 2024

ACKNOWLEDGEMENTS

이학위논문을완성할수있도록도와주신모든분들께깊은감사의인사를드립니다.

먼저,이논문을지도해주신김한준교수님께진심으로감사드립니다.포항공대재학중이였

던 2017년연구실인턴부터지금까지교수님의뛰어난지도력과끊임없는격려는저에게큰힘이

되었습니다. 연구 과정에서 항상 좋은 개선 방향을 제시해 주시고, 저의 아이디어를 존중하며

발전시킬 수 있도록 도와주신 교수님의 헌신에 깊이 감사드립니다. 또한, 학위과정 동안 많은

도움을 주시고 논문 심사에 참여해주신 이동윤 교수님께도 특별히 감사드립니다. 2020년부터

함께 동형암호 연구를 시작하여 지금까지 연구와 관련하여 많은 조언을 주시고 항상 열과 성을

다해 도와주셨기 때문에 지금까지 연구를 이어올 수 있었습니다. 논문 심사를 맡아주신 노원우

교수님,송진호교수님,김영석교수님께도깊은감사의말씀을드립니다.귀중한시간을내어제

논문을꼼꼼히검토해주시고,소중한피드백과조언을해주신덕분에논문의질을한층더높일

수있었습니다.교수님들의지원과조언에진심으로감사드립니다.

컴파일러최적화연구실의모든동료들께도감사의마음을전합니다.연구실동료들의따뜻

한 응원과 협력 덕분에 연구 과정에서 많은 어려움을 극복할 수 있었습니다. 그동안 연구실에서

함께했던 허선영 교수님, 이경민 박사님, 김봉준 박사님, 김창수 박사님, 송승빈 박사님, 조성준,

정신녕, 이재호, 김근우, 최희림, 윤성우, 박현준, 이주민, 권현호, 이찬, 정건모, 정해은, 남주현

선생님에게 감사드립니다. 특별히 동형암호 연구를 함께한 천선영, 김동관, 염호윤에게 깊은 감

사의말을전합니다.가족들에게도깊은감사를드립니다.항상변함없는사랑과지지로저를응

원해주신부모님께특별히감사드립니다.또한,힘든시기마다곁에서힘이되어준동생에게도

고마움을 전합니다. 여러분들의 응원과 격려가 저에게 큰 힘이 되었습니다. 친구들에게 감사의

인사를 전합니다. 연구 외의 시간에도 함께 웃고 즐기며 스트레스를 풀 수 있었던 시간들이 저

에게 큰 위로가 되었습니다. 일상을 함께하고 서로 이해하며 사람다운 삶을 살게 해주는 소중한

사람과 대학원 생활 중 여유를 가지게 해준 이재원, 이인혁에게 특별히 감사의 말을 전합니다.

여러분들과함께한시간들은제인생에서소중한추억으로남을것입니다.

TABLE OF CONTENTS

List of Tables . vi

List of Figures . vii

Abstract . ix

Chapter 1 Introduction . 1

1.1 Fully Homomorphic Encryption Application and Compiler 2

1.2 Performance-aware Scale Optimization . 5

1.3 Error-Latency-Aware Scale Management 7

1.4 Performance-aware Static Scale Analysis 9

1.5 Dissertation Organization . 11

Chapter 2 Background . 13

2.1 RNS-CKKS Encoding and Encryption . 13

2.2 RNS-CKKS Operations and Conditions 17

2.3 RNS-CKKS Scale Management Compiler 19

2.4 Other Related Work . 20

i

2.4.1 General-purpose HE compilers . 21

2.4.2 Domain-specific HE compilers . 21

2.4.3 RNS-CKKS Algorithm and Acceleration 22

2.4.4 Privacy-preserving Machine Learning 23

Chapter 3 HECATE Language and Type Systems 25

3.1 HECATE Language . 25

3.2 Scale Type Systems . 27

3.3 FHE Operational Semantics . 29

3.4 Type Soundness . 32

Chapter 4 Performance-aware Scale Optimization 34

4.1 Necessity of Performance-aware Scale Optimization 35

4.2 Overview of Performance-aware Scale Optimization 36

4.3 Scale Management Unit Generation . 41

4.4 Scale Management Space Explorer . 44

4.4.1 Scale Management Planner . 45

4.4.2 Performance Estimator . 46

4.5 Code Generation: Proactive Rescaling . 46

4.6 Evaluation of Performance-aware Scale Optimization 49

4.6.1 Experimental Setup . 49

ii

4.6.2 Performance Evaluation . 51

4.6.3 Search Space Reduction . 54

4.6.4 Performance Estimation . 55

4.7 Summary . 56

Chapter 5 Error-Latency-Aware Scale Management 58

5.1 Necessity of Error-Latency-Aware Scale Management 59

5.2 Overview of Error-Latency-Aware Scale Management 62

5.2.1 Error-Latency-Aware Scale Management 63

5.2.2 SNR: Fine-grained Noise-aware Waterline 65

5.2.3 ELASM Compiler Design . 66

5.3 Error-Latency-Aware Scale Management 68

5.3.1 Sampling of Scale Management Space 68

5.3.2 Noise-aware Waterline Management 69

5.3.3 Error Estimation . 70

5.4 Code Generation . 72

5.4.1 Type System of ELASM . 72

5.4.2 ELASM Rewriting Rules . 73

5.5 Evaluation of Error-Latency-Aware Scale Management 75

5.5.1 Pareto Curve of Error-Latency Trade-off 75

5.5.2 Error Estimation . 78

iii

5.5.3 Error-proportionality of SNR parameter 79

5.5.4 Case Study: End-to-end DNN Application 81

5.6 Summary . 83

Chapter 6 Performance-aware Static Scale Analysis 85

6.1 Necessity of Performance-aware Static Scale Analysis 86

6.1.1 Forward Static Scale Analysis . 86

6.1.2 Tightly Coupled Scale Management and Analysis 88

6.1.3 Exploration-based Scale Management 90

6.2 Overview of Performance-aware Static Scale Analysis 92

6.3 Reserve Type System . 93

6.3.1 Rationale . 94

6.3.2 Typing Rules . 95

6.4 Reserve Analysis . 95

6.4.1 Allocation Ordering . 96

6.4.2 Reserve Allocation . 97

6.4.3 Reserve Redistribution . 99

6.5 Code Generation: Rescale Placement . 100

6.6 Evaluation of Performance-aware Static Scale Analysis 101

6.6.1 Compilation Time . 102

6.6.2 Performance . 104

iv

6.6.3 Performance Improvement Breakdown 107

6.7 Summary . 109

Chapter 7 Conclusion . 110

7.1 Contributions . 110

7.2 Future Work . 111

7.3 Summary . 112

References . 113

국문초록 . 127

v

LIST OF TABLES

2.1 RNS-CKKS parameters and relations. 15

2.2 RNS-CKKS operations and constraints. 17

2.3 Time complexity and noise of RNS-CKKS operations 19

3.1 FHE operational semantics . 30

4.1 RMS Error of the programs . 51

4.2 Search space reduction . 54

5.1 Value and error estimation . 70

6.1 Latency of RNS-CKKS operations . 86

6.2 Compile time of EVA, HECATE, and this work 103

vi

LIST OF FIGURES

1.1 FHE application service model. 3

1.2 FHE Compiler Design. 4

2.1 Scale model for RNS-CKKS operations 16

3.1 Hecate language formal syntax . 26

3.2 Typing rules of scale type system . 28

4.1 Scale management scheme comparison . 37

4.2 HECATE framework design . 40

4.3 Scale management unit analysis example 43

4.4 Rewriting rules for proactive rescaling. 48

4.5 HECATE Performance Evaluation . 52

4.6 Performance Estimation Accuracy . 56

5.1 EVA scale management with various waterline settings 60

5.2 Input scale parameter and variation in the output error 61

vii

5.3 Inference accuracy of LeNet-5 for different errors. 62

5.4 Comparison of scale management approaces of EVA and ELASM 64

5.5 Design of the ELASM compiler . 67

5.6 Subset of typing rules . 72

5.7 Rewriting rules for ELASM . 74

5.8 Pareto-frontier of error-latency trade-offs 76

5.9 Error and latency for a given constraint . 77

5.10 R2 between estimated and measured error 79

5.11 R2 between parameter and error . 80

5.12 Case Study on LeNet-5 . 82

6.1 Execution time and scale management plan for the example program 89

6.2 Overview of the rescale placement and reserve analysis 91

6.3 Typing rules of reserve type system . 93

6.4 Latency comparison of EVA, HECATE, and Reserve analysis 105

6.5 Error comparison for two different waterlines 106

6.6 Breakdown comparison of reserve analysis 108

viii

ABSTRACT

Error-Latency-Aware Scale Management Compiler
for Fully Homomorphic Encryption

Owing to its capabilities for fixed-point arithmetic and SIMD-like vectorization, among

fully homomorphic encryption (FHE) schemes that enable computations on encrypted data,

RNS-CKKS stands out as a popular choice for privacy-preserving machine learning services.

While previous efforts automate scale management essential for RNS-CKKS’s fixed-point

arithmetic, they show limited performance improvement and accuracy gain. This limitation

restricts the ability of users to investigate and optimize the trade-off between error margins

and latency.

This dissertation encompasses three pivotal studies that collectively advance the domain

of fully homomorphic encryption (FHE), particularly the RNS-CKKS scheme, to bolster

privacy-preserving machine learning services. The first study introduces HECATE, an

innovative FHE compiler framework that optimizes ciphertext scales by leveraging a novel

type system and a rescaling operation termed "downscale". HECATE analyzes various scale

management plans for their expected performance impact, enabling optimal rescaling points

throughout FHE applications.

The second study delves into the ELASM scheme, which proposes an error- and latency-

aware scale management for RNS-CKKS, addressing the limitations of previous works that

overlook the output error’s impact. By actively managing the ciphertext scale, ELASM

minimizes the error-latency cost function, introducing a new scale-to-noise ratio (SNR)

parameter and noise-aware waterlines for enhanced error-latency trade-offs. This approach

ix

demonstrates superior performance on machine and deep learning benchmarks compared to

existing solutions.

The third study proposes a performance-aware static scale analysis for RNS-CKKS

programs, aimed at overcoming the challenges of manual scale management and the

inefficiencies of existing compilers. Through backward analysis of the scale "reserve" of each

ciphertext and a novel type system, this method redistributes scale budgets for performance-

aware management.

Together, these studies present a comprehensive approach to optimizing FHE applications

through advanced compiler frameworks, scale management schemes, and performance

analysis techniques. They not only demonstrate the feasibility of efficient, privacy-preserving

applications but also open new avenues for further research in optimizing encrypted com-

putation, resulting in a 41.8% performance improvement over conservative static analysis

approaches and significantly faster scale management times compared to exploration-based

methods.

Keywords: Homomorphic encryption, RNS-CKKS, scale management, compiler, error-latency-awareness

x

Chapter 1

INTRODUCTION

Fully homomorphic encryption (FHE) [1] is a breakthrough in cryptography that allows

for performing any computational function on encrypted data. The computational function

on encrypted data produces an encrypted result that the decryption of the result matches

the outcome of the same computations performed on the original data. This remarkable

capability supports secure data processing on external platforms like cloud services, crucial

for privacy-sensitive applications in areas such as healthcare, finance, and insurance [2, 3, 4,

5, 6, 7] where confidentiality and adherence to stringent regulations are vital. Companies

like Microsoft and IBM have already demonstrated FHE’s potential through real-world

applications in the fields like bioinformatics and financial services.

The RNS-CKKS [8] scheme stands out among numerous FHE schemes [8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21] for its suitability for machine learning (ML) tasks [22],

offering unique advantages tailored for these applications. It supports fixed-point arithmetic

by scaling decimal numbers to integers, allowing precise calculations involving decimals

without losing accuracy. Additionally, it features SIMD-like vectorization, or batching,

which processes multiple data points at once within a single encrypted ciphertext, boosting

computational efficiency and speed—benefits that are particularly valuable in ML scenarios

that involve large datasets.

RNS-CKKS has become a popular choice for developing FHE libraries and compilers

that cater to privacy-preserving ML services, thanks to libraries like SEAL, HElib, and

1

HEAAN [23, 24, 25], which provide tailored functionalities to facilitate the deployment of

FHE applications. FHE compilers such as EVA [26] and CHET [27] are designed to optimize

the use of RNS-CKKS, simplifying the creation of secure ML applications. These tools are

essential in translating the theoretical advantages of FHE into practical, operational solutions

that enable secure, insightful data analysis without compromising data privacy.

Creating an ML application that is secure, accurate, and fast using the RNS-CKKS

scheme involves overcoming significant challenges due to the complex handling required

for ciphertext scales. In the fixed-point arithmetic of RNS-CKKS, multiplication operations

increase the scale of ciphertexts, which can lead to overflow and inaccuracies. Additionally,

certain operations introduce noise that does not depend on the scale, necessitating meticulous

balance to prevent underflow and large error margins, thus preserving data integrity.

Understanding the interplay of scale management with error and latency is critical.

Accumulated errors from RNS-CKKS operations can degrade the quality of service (QoS),

reducing the accuracy of ML predictions. This underscores the importance of precise scale

management to maintain or enhance QoS. Furthermore, latency varies with the scaling level

of operands, adding layers of complexity to scale management. Strategic rescaling across

different stages can markedly influence program performance and introduce extra noise,

presenting additional challenges in scale management.

1.1 Fully Homomorphic Encryption Application and Compiler

Figure 1.1 illustrates the operational model for applications employing fully homomorphic

encryption (FHE). Within this model, an automated compiler adept at managing scale is

responsible for both transforming a standard program into its FHE counterpart and for

selecting appropriate encryption parameters. These parameters are then utilized to create

both a private key and a public key. In the context of an FHE application, the client uses the

2

Client Server

Compile

Keygen

Encrypt

Decrypt

Program

HE Program

Encryption
Parameters

Private Key Public Key

Encrypted
Result

Encrypted
Data

Result

Data

Preparation

Execute

Figure 1.1: FHE application service model.

public key to encrypt sensitive data, which is subsequently sent to the server. The server, in

turn, processes this encrypted data using the FHE program compiled by the compiler and

sends back the outcome of the computation in an encrypted format. Upon receiving this

encrypted computational result, the client can retrieve the original, unencrypted result by

using the private key to decrypt the data. This process underscores the seamless integration

of encryption into the application’s workflow, ensuring data privacy and security throughout

the computational exchange.

3

FHE Compiler

Scale Management

HECATE (§4) ELASM (§5) Reserve
Analysis (§6)

Library Mapping

Python Frontend (HECATE Language, §3)

FHE Backend (§2.4.3)

FHE Library

CPU GPU FPGA ASIC

Privacy-preserving applications (§2.4.4)

Buffer Usage
Analysis

Buffer
Management

Backend
CodeGen

This work

Figure 1.2: FHE Compiler Design.

The advance of fully homomorphic encryption (FHE) compilers [26, 27] has marked a

significant milestone in the domain of secure computing, offering developers streamlined tools

that automate the intricate process of managing ciphertext scales. These compilers, emerging

from recent proposals in the literature, undertake the task of meticulously tracking the

progression of scale within cryptographic computations. They are designed to automatically

introduce rescale operations whenever the scale of a ciphertext exceeds a predefined threshold,

known as the waterline. This approach ensures that the rescaling levels of FHE operands are

consistently aligned, thereby maintaining the computational integrity of FHE applications.

4

Figure 1.2 depicts the role of a scale management compiler for fully homomorphic

encryption. The privacy-preserving application (§2.4.4) and FHE library and accelerators

(§2.4.3) are not in the scope of this dissertation. The proposed scale management compiler

accepts the privacy-preserving applications written in HECATE language (§3) and then

the compiler performs scale management as proposed in this dissertation (§4,5,6). The

proposed scale management shares the same compiler implementation that includes the

scale management as a compiler pass. The compiler provides the library mapping layer

that performs buffer usage analysis, buffer management, and backend code generation. The

library mapping layer supports optimizations to reduce the ciphertext memory usage and

code generations that can be adapted to FHE libraries. The runtime that uses FHE libraries

can run the generated code.

1.2 Performance-aware Scale Optimization

Recent advancements in fully homomorphic encryption (FHE) compilers [26, 27] have aimed

to alleviate the complexity of programming by automating the management of ciphertext

scales. These compilers monitor scale progression throughout computations, strategically

inserting rescale operations whenever the scale exceeds a predefined minimum threshold,

known as the waterline. They also ensure that the rescaling levels of FHE operands are

appropriately matched. Despite these efforts, such compilers have not achieved optimal

efficiency in FHE application performance. The primary oversight lies in the waterline-based

rescaling approach, which neglects to account for the performance implications of rescale

decisions. Specifically, in the RNS-CKKS scheme, the latency associated with any given

operation is influenced by the rescaling levels of its operands—a factor that current scale

management practices overlook, thus missing out on crucial performance optimization

possibilities.

5

This research introduces HECATE [28], an advanced compiler framework for fully

homomorphic encryption (FHE) that is designed to finely tune the scales of ciphertexts by

taking into account their rescaling levels and the potential impact on performance. HECATE

embarks on this task with a multi-pronged approach aimed at optimizing scale management

in a way that has not been previously achieved. Initially, HECATE brings to the fore a novel

parameter-switching operation named ‘downscale’. This operation distinctively rescales a

ciphertext even when its scale is below the combined value of the rescaling factor and a

predefined threshold, known as the waterline, thereby facilitating a more proactive approach

to rescaling.

Further deepening its analysis, HECATE scrutinizes the ciphertexts along with their cor-

responding FHE operations, organizing them into scale management units. This organization

is based on clustering together ciphertexts that share identical scales and rescaling levels,

thereby streamlining the scale management process. Subsequently, HECATE embarks on

constructing an array of scale management strategies, rigorously estimating the performance

of each to identify the most effective scale management plan. This process is not merely

about optimizing for efficiency; it also carefully considers the optimal timing and application

of rescaling to enhance the overall performance and accuracy of the FHE applications.

Moreover, acknowledging the critical importance of adhering to the scale and rescaling

level constraints that FHE operations impose, HECATE integrates a newly developed type

system. This system is ingeniously designed to verify the compatibility of scales and rescaling

levels of FHE operands, ensuring that the scale management adheres to the necessary

computational constraints and maintains the integrity and security of the encrypted data.

Through these innovations, HECATE represents a significant leap forward in the field of

FHE, offering a robust framework that enhances the scalability, performance, and practicality

of privacy-preserving computations.

6

1.3 Error-Latency-Aware Scale Management

In addition to ensuring correctness in their developments, programmers must also weigh

the implications of scale management on both error accumulation and operational latency.

The accumulation of errors from each operation within the RNS-CKKS framework can

significantly impact the Quality of Service (QoS) for an application, with a notable example

being the degradation of prediction accuracy in machine learning (ML) applications as the

magnitude of error increases. Therefore, developers must minimize these resultant errors

to maintain or enhance QoS. Complicating matters further, the latency of RNS-CKKS

operations varies based on the rescaling levels of operands, making manual scale management

a challenging task due to its indirect yet significant effects on both program latency and the

level of noise introduced by subsequent operations.

In response to these challenges, automated scale management proposals such as EVA

and Hecate [26, 28] have been developed. Yet, these approaches exhibit two fundamental

shortcomings that inhibit users from achieving more efficient error-latency optimizations.

Firstly, neither scheme sufficiently addresses the impact of scale management on the resulting

errors. EVA’s strategy [26] involves adding rescale operations only when the post-rescaling

scale surpasses a pre-determined minimum threshold, known as the waterline. This threshold

is rigidly set at the maximum scale of the input ciphertexts, disregarding potential impacts on

error and latency. Meanwhile, Hecate [28] introduces a proactive scale reduction operation

called downscale, which adjusts the ciphertext scale to a predetermined waterline and

investigates various scale management strategies focusing solely on latency improvements,

neglecting error considerations in the process.

Secondly, both approaches utilize a rudimentary, noise-unaware waterline to mitigate

scale underflow risks, failing to account for the variance in noise levels introduced by different

7

RNS-CKKS operations. This oversight can result in a waterline that is either excessively

high for operations introducing minimal noise, or insufficiently low for those generating

significant noise. Although adopting a conservative waterline approach may prevent scale

underflow, it risks compromising the delicate balance between latency and error, potentially

leading to suboptimal trade-offs.

This research introduces ELASM [29], a pioneering approach aimed at enhancing the

exploration of trade-offs between error and latency for users. Initially, ELASM brings forth a

groundbreaking error prediction model tailored for the RNS-CKKS scheme. This model is

adept at anticipating discrepancies between outcomes obtained from computations performed

on plaintext and those executed within the FHE framework. It achieves this by accounting for

the distinct noise introduced by each RNS-CKKS operation, based on the operation type and

the rescaling level of its operands. The model then predicts the resulting error, taking into

consideration the noise associated with each operation, the scale of the ciphertext, and the

cumulative effect as the data progresses through the computational flow.

Continuing, the paper unveils the Error-Latency-Aware Scale Management (ELASM)

strategy, designed to pinpoint the most effective scale management method that aligns with a

user-defined cost function that considers both error and latency. ELASM starts by creating

an array of scale management scenarios through varied integrations of scale management

operations. It proceeds to assess the resulting error via the newly developed error prediction

model and calculates latency by aggregating the delays incurred by each RNS-CKKS

operation. Utilizing these assessments, ELASM employs the user-defined criteria to compute

the cost, selecting the strategy that minimizes this cost. Uniquely, by factoring in both

error and latency into its cost function, ELASM is poised to recommend adjustments to the

ciphertext’s scale when deemed advantageous.

8

Lastly, this study proposes the introduction of a novel scale-to-noise ratio (SNR) metric,

complemented by detailed, noise-aware thresholds for various RNS-CKKS operations. The

SNR parameter ensures that the scale m of ciphertext and the noise n produced by an

operation must satisfy or surpass the SNR value (i.e., m/n≥ SNR), drawing a parallel with the

signal-to-noise ratio utilized in traditional signal processing. Leveraging this SNR, ELASM

delineates specific thresholds for different operations known for their noise generation, such

as rescale and rotate, thereby enabling a more favorable balance between error and latency.

1.4 Performance-aware Static Scale Analysis

Compilers for the RNS-CKKS encryption scheme, such as EVA and Hecate, significantly

alleviate the programming workload by automating the management of ciphertext scales.

However, they either do not achieve optimal performance enhancement or necessitate labor-

intensive exploration of scale management strategies. Throughout a program’s execution,

these compilers assess the scale of ciphertexts and integrate scale management operations

to adhere to RNS-CKKS’s specific requirements. EVA’s strategy focuses on reducing the

input coefficient modulus Q, incorporating rescale operations when the scale after rescaling

exceeds a predetermined minimum scale known as the "waterline". Given that higher

operand ciphertext levels translate to increased latency in RNS-CKKS, incorporating level-

sensitive scale management becomes essential for enhancing performance. However, EVA’s

methodology of forward scale analysis struggles to accurately assess the levels of intermediate

ciphertexts due to the intricate relationship between level and scale, making it less effective

in inserting rescale operations judiciously.

Conversely, Hecate outperforms EVA by conducting an iterative review of various scale

management strategies, aiming for a more refined performance optimization. Despite its

superior performance outcomes, Hecate’s method of iterative exploration faces scalability

9

challenges with larger applications due to protracted compilation times. For example,

compiling the LeNet-5 architecture involves 14,763 iterations, resulting in a compilation

duration of 483 seconds. This extensive compilation time underscores the limitations of

Hecate’s exploration-based approach in efficiently scaling to more complex applications.

In this study [30], we introduce a novel concept of reserve analysis, a performance-oriented

backward static scale analysis tailored for RNS-CKKS programs. This analysis introduces the

concept of "reserve", defined as the quotient of the coefficient modulus divided by the current

scale of a ciphertext. This reserve represents the available scale "budget" for a ciphertext,

providing a measure of how much scaling capacity remains before the ciphertext scale reaches

its operational limit. A critical attribute of the reserve is its consistency across rescaling

operations, which markedly streamlines the process of reserve analysis by maintaining this

invariance.

Expanding upon this foundation, the study meticulously formalizes the semantics of

reserve, paving the way for the development of a bespoke reserve type system. This system is

meticulously crafted to manage reserves accurately and to conduct an efficient latency analysis

of operations within the RNS-CKKS framework. Utilizing a backward analytical approach,

this reserve analysis methodically deduces the operand reserves based on the reserves of

the operation results, tracing from the conclusion of the program to its commencement.

This reverse traversal facilitates a strategic allocation of reserves, giving precedence to

more computationally intensive operations. Such prioritization allows for a more aggressive

reduction in the scaling level of these “heavy" operations, optimizing overall program

performance.

Upon establishing a specific reserve allocation, the study delves into a static analysis of

the placement of rescale operations within the program. This rescale placement algorithm

meticulously evaluates the cost implications of various rescale placement strategies, aiming

10

to discern the most cost-effective arrangement. By comparing the potential impacts of

different placements on program performance, the algorithm seeks to identify the optimal

rescale placement. This comprehensive analysis not only enhances the understanding of

scale management within RNS-CKKS programs but also contributes significantly to the

optimization of latency and computational efficiency, marking a significant advancement in

the domain of encrypted computation.

1.5 Dissertation Organization

The structure of this dissertation is organized as follows:

Chapter 2 provides an overview of the RNS-CKKS scheme, focusing on ciphertext

operations and existing scale management approaches. It also reviews other relevant works in

fully homomorphic encryption compilers.

Chapter 3 introduces the HECATE language and its type systems, which formalize the

semantics of FHE programs. It sets the foundation for formally describing the proposed scale

management schemes.

Chapter 4 details HECATE, a compiler that enhances performance through optimized

scale management. It discusses the implementation of scale management units, a scale

management space explorer, and scale management code generation.

Chapter 5 introduces ELASM, which incorporates a new compilation parameter, SNR,

to achieve error-latency-aware scale management. It explores the concepts of noise-aware

waterlines and error-optimizing mechanisms in scale management.

Chapter 6 describes a performance-aware static scale analysis that uses a new concept,

the reserve, to accurately analyze and influence the effects of scale management. It explains

how this analysis contributes to effective scale management code generation.

11

Chapter 7 concludes the dissertation, summarizing the contributions and discussing

potential avenues for future work.

12

Chapter 2

BACKGROUND

Ever since Gentry introduced the world to the concept of fully homomorphic encryption (FHE)

in 2009 [9, 10], a variety of FHE methods have been developed, including BGV/BFV [16,

19], CKKS [8, 15], and GSW [31]. This paper focuses RNS-CKKS method, which has

proven particularly effective for machine learning (ML) tasks. This effectiveness comes from

RNS-CKKS’s ability to handle fixed-point numbers (numbers with decimal points) and to

perform operations on many data points simultaneously, a feature known as vectorization.

While BGV/BFV also allows for working with multiple data points at once, they’re better

suited for calculations with whole numbers rather than decimals. On the other hand, GSW

stands out for its rapid bootstrapping capabilities—a process that refreshes encrypted data to

prevent it from becoming too noisy and unreadable over many calculations. However, unlike

RNS-CKKS and BGV/BFV, GSW does not have built-in support for vectorization, making it

less ideal for tasks that benefit from processing many data points in parallel.

2.1 RNS-CKKS Encoding and Encryption

The RNS-CKKS encryption method takes advantage of the special properties found in rings of

integer polynomials for storing and manipulating data in both its unencrypted (plaintext) and

encrypted (ciphertext) forms. Essentially, this method transforms a set of complex numbers

(which can include real numbers) into a polynomial equation with whole number coefficients.

13

This polynomial equation lives in a space defined by the equation XN +1, where N is related

to the polynomial’s complexity and is known as its degree.

Formally, the set of complex numbers x ∈ CN/2 turned into a polynomial p(X) ∈

Z[X]/(XN + 1). N denotes the degree of polynomial and the number of complex numbers

is exactly half of the degree. Z[X]/(XN + 1) means that the coefficient of the polynomial

is in a set of integers (Z) and the polynomial is in a quotient ring defined by XN + 1 (i.e.,

p(X) ≡ p(X) + (XN + 1)).

A crucial step in this process is scaling, which adjusts the data to fit within the polynomial’s

integer coefficients. This is done by multiplying the original data values by a scaling factor (m)

and rounding to get a whole number. For example, to encode the value 1.234 for encryption,

it could be scaled by 100 to become the integer 123 before embedding in the polynomial.

This scaling factor also sets the boundaries for the data’s size within the polynomial.

To secure the data, RNS-CKKS uses a technique called Ring Learning with Errors

(R-LWE), turning the plaintext polynomial into a ciphertext made up of two polynomial parts.

These parts are contained within a specific range, controlled by a parameter known as the

ciphertext coefficient modulus (Q). In other words, The coefficient of a polynomial should be

the element of a quotient ring defined by Q (i.e., (a ∈ ZQ[X]/(XN +1))). The ciphertext for a

given plaintext (p) is given by (a · s+ p+ e, a) for a random mask polynomial a, secret key

polynomial s, and an error polynomial e.

Encrypting the data involves defining a maximum ’level’ (l) for the ciphertext, which

ensures the data’s size does not exceed the limits set by Q. If Q is not large enough to contain

the scaled data (i.e., Q < ⌊m · x⌉), the encryption cannot be correctly undone. RNS-CKKS

selects Q as a product of smaller values, known as rescaling factors (R), with the level (l)

indicating how many of these factors are used, essentially controlling the data’s precision and

14

Table 2.1: RNS-CKKS parameters and relations adapted from [30].

Param. Description Relation

Encryption Key Parameters (Static)

N Polynomial modulus degree.
Qmax Maximum coefficient modulus.
L Level of Qmax.
R Rescaling factor. Qmax ≈ RL

Ciphertext Parameters (Dynamic)

Q Coefficient modulus of a ciphertext. Q < Qmax

m Scale of an encoded plain/ciphertext.
n Noise of a ciphertext.
ϵ Error of a ciphertext. ϵ = n/m
l Level of a plain/ciphertext. l < L and Q ≈ Rl

d Rescaling level of a plain/ciphertext. l + d = L
r Reserve of a plain/ciphertext. r = Q/m
µ Log-scale encoding scale. µ = logR m
ρ Log-scale reserve. ρ = logR r = l − µ.

Compiler Parameters (Static)

W Waterline. W ≤ m
ω Log-scale waterline. ω = logR W

xmax Upper bound of encoded value. m · xmax < Q

Notations

⌈x⌉ Ceiling function. e.g., ⌈0.5⌉ = 1
{x} Fractional part function. e.g., {1} = 1 {x} = x+ 1− ⌈x⌉ .

security level. The rescaling factor is predefined as usual, so the level is selected to satisfy

the constraint Q ≈ Rl ≥ ⌊m · x⌉.

Table 1 summarizes the RNS-CKKS parameters and their interrelationships, providing a

reference to understand the various components and their roles within the encryption scheme.

The scale model in Figure 2.1a illustrates the relationships between the scale (m), level

(l), and coefficient modulus (Q) in the RNS-CKKS scheme. The coefficient modulus defines

the upper bound of the range for the encrypted values, while the scale represents the actual

15

: unused
: encoded
: removed 𝑟

𝑅

𝑅

𝑅

𝑅 scale

reserve

𝑚

Q = R! = 𝑟 ' 𝑚

rescaling factor 𝑅

coeff. modulus 𝑄

(a) Scale model

+ =

𝑚! = 𝑚" = 𝑚# 𝑟! = 𝑟" = 𝑟#

𝑄

𝑚!

𝑟!

𝑄

𝑚"

𝑟"

𝑄

𝑚#

𝑟#

(b) Addition

×
𝑄

𝑚!

𝑟!

=
𝑄 𝑚"

𝑟"

𝑚" = 𝑚! % 𝑚# 𝑄 % 𝑟" = 𝑟! % 𝑟#

𝑄

𝑚#

𝑟#

(c) Multiplication

𝑄! 𝑚′

𝑟

𝑅

Q! = 𝑄/𝑅 𝑚! = 𝑚/𝑅

𝑟𝑒𝑠𝑐𝑎𝑙𝑒

𝑄 𝑚

𝑟

(d) Rescale

Figure 2.1: The scale model for RNS-CKKS operations reproduced from [30]. The ciphertext
has a coefficient modulus Q = R4 where R is the rescaling factor. m and r represent the
scale and reserve of a ciphertext, respectively.

magnitude of the encrypted data within that range. Multiple rescaling factors are utilized to

support a larger coefficient modulus.

This paper introduces the concept of reserve (r), which denotes the unused portion of

the coefficient modulus. The reserve is allocated to ensure that the scale (m) of a ciphertext

remains smaller than the coefficient modulus (Q) during subsequent operations (i.e., Q = r · l),

serving as a safety margin to prevent overflow.

16

Table 2.2: RNS-CKKS operations and constraints adapted from [30]

Op. Description

Arithemetic Operations (affect encoded values)

× Multiply ciphertext and cipher/plaintext. The parameters of e1× e2 is m = m1 ·m2

and l = l1 = l2 where the scale and level of ei is mi and li, respectively.
+ Add ciphertext and cipher/plaintext. m = m1 = m2 and l = l1 = l2.
− Negate ciphertext. m = m1 and l = l1.

rotate Change (Rotates) the position of encoded value in ciphertext. m = m1 and l = l1.

Scale Management Operations (not affect encoded values)

rescale Remove a single small modulus of coefficient modulus, reducing the scale of
ciphertext. m = m1/R and l = l1 − 1

modswitch Remove a single small modulus of coefficient modulus. m = m1 and l = l1 − 1
upscale Increase the scale of ciphertext. m = m1 ·mup and l = l1

2.2 RNS-CKKS Operations and Conditions

In the RNS-CKKS scheme, operations are divided into two main categories: arithmetic and

scale management, each with its own latency that hinges on the complexity level of the

encrypted data involved as listed in Table 2.3. Table 2.2 lays out these operations along with

their specific requirements.

For arithmetic operations, certain rules must be followed. For example, when adding two

numbers (as shown in Figure 2.1b), both the scale (the precision of the numbers) and the level

(a measure of complexity) of the operands need to be identical. The outcome of the addition

retains the same scale and level as the inputs. In multiplication (Figure 2.1c), however, it’s

only the level of the operands that need to match, and while the level of the result stays the

same, the scale doubles because it’s the product of the scales of the two operands. Unary

operations like negation and vector rotation don’t impose restrictions on scale or level – the

results simply mirror the scale and level of the input. Notably, the rotate operation shuffles

the positions of elements in an encrypted sequence.

17

Scale management operations, meanwhile, play a crucial role in maintaining the integrity

of encrypted data without altering its value. They adjust both the scale and level of the

ciphertext to prevent issues like scale overflow (when multiplication operations cause the

scale to exceed a critical threshold) and to meet the requirements for arithmetic operations.

The rescale operation (Figure 2.1d), for instance, reduces the scale by dividing the integer

values embedded in the ciphertext by a factor, simultaneously lowering the level by one. The

modswitch operation also decreases the level by one but doesn’t change the scale. Conversely,

upscale increases the scale according to a specified factor. These management steps ensure

that operations comply with the RNS-CKKS system’s constraints, and it’s the job of FHE

compilers like EVA and HECATE to integrate these steps appropriately within computations.

RNS-CKKS is built on the RLWE principle [32], which works by adding a small

random noise during the encryption and the other operations. Alongside the initial noise

introduced during encryption, three specific RNS-CKKS operations—rescale, rotate, and

relinearize—add extra noise to the final ciphertext, as shown in Table 2.3.

The computation error ϵ is the difference between the results of plain and FHE computa-

tions. Notably, the RNS-CKKS operations add noise regardless of the scale. The error ϵ is

determined by the ratio of the noise to the scale; for instance, a noise n = 10 results in an

error of 0.01 for a scale m = 103 and an error of 0.001 if m = 104. This relationship shows

that for a particular level of noise, maintaining a minimum scale is crucial to limiting the

maximum error in an FHE operation.

Correctly inserting scale management operations is key to adhering to RNS-CKKS’s

operational rules. For instance, placing a rescale immediately after a multiplication that

results in a scale larger than the noise of rescale and rescaling factor prevents overflow.

However, this can cause issues like level mismatch in subsequent operations, necessitating the

use of modswitch to align levels and upscale to synchronize scales for addition operations.

18

Table 2.3: Time complexity [27] and noise [33] of RNS-CKKS operations adapted from [29].
The multiplication between ciphertexts implicitly performs relinearize after multiplication
(so ciphertext-ciphertext multiplication adds noise). N : polynomial modulus, l: level, σ:
standard deviation of encryption error.

RNS-CKKS Ops Time Complexity Noise
−, +, × O(N · l) 0
modswitch O(N · l) 0
rotate, relinearize O(NlogN · l2) 8

√
3

3 σlN + 8
√
2

3 N +
√
3N

rescale O(NlogN · l2) 8
√
2

3 N +
√
3N

This strategy ensures that all operations within the RNS-CKKS framework smoothly integrate,

maintaining both the integrity and precision of the encrypted data.

2.3 RNS-CKKS Scale Management Compiler

To lighten the workload for programmers, several FHE compilers [26, 27, 34, 35] for

RNS-CKKS have been developed. One of the newest among these is the Encrypted Vector

Arithmetic (EVA) compiler [26], which introduces two innovative concepts: waterline

rescaling and rescale chain. These features aim to automate the management of scale and the

selection of parameters effectively.

Scale management involves inserting specific operations to ensure a program adheres

to the RNS-CKKS framework, all while maintaining the original meaning of the program.

The objective of an optimizing compiler goes beyond merely incorporating acceptable scale

management practices; it strives to identify the most efficient scale management solution.

Firstly, EVA automates the placement of rescale operations to ensure the scale of a

ciphertext remains below the coefficient modulus Q, yet it triggers these rescale operations

only if the resulting scale is still above a predefined threshold called the waterline. Specifically,

EVA sets the waterline at the maximum scale of the input ciphertexts, aiming to maintain the

scales of all intermediate and resulting ciphertexts above this threshold.

19

Secondly, EVA introduces the idea of a rescale chain to meet the requirement that

operands of binary operations be at the same level. This rescale chain maps out a sequence

of rescale and modswitch operations needed from the initial (root) ciphertext to the target

ciphertext. As these operations can increase the rescaling level of a ciphertext, the number of

operations in a rescale chain determines the rescaling level of that ciphertext. EVA monitors

these levels through the rescale chains to ensure they meet this level consistency requirement.

Finally, EVA sets the coefficient modulus based on the longest rescale chain. Based

on the rescaling level which means the number of rescale and modswitch from the initial

ciphertext to the target and the scale of the target ciphertext, the compiler calculates the

consumption of the scale capacity. In detail, the scale consumption (accumulated scale) of

the ciphertext is m ·Rd where d denotes the rescaling level. The maximum accumulated scale

of the ciphertexts is selected to the coefficient modulus to prevent the scale overflow.

The concrete example of scale management in EVA will be revisited in the following

sections to motivate each work and compare the EVA with the proposed ideas.

2.4 Other Related Work

Numerous fully homomorphic encryption (FHE) libraries such as HElib [24], PALISADE [36],

SEAL [23], and HEaaN [37] are available, each supporting specific HE schemes and offering

low-level FHE operations for application implementation. A study in [22] evaluates these FHE

compilers and tools to assess their performance and usability across different applications.

These compilers simplify FHE by concealing its complex details behind a high-level language

and automatically selecting suitable encryption parameters for applications.

20

2.4.1 General-purpose HE compilers

Previous works [26, 38, 39, 40, 41, 42, 43, 44, 45, 46] proposes new programming languages or

the implementation of general-purpose HE applications for existing programming languages.

Several works propose new programming languages or adaptations of general-purpose HE

applications for existing languages [26, 38, 39, 40, 41, 42, 43, 44, 45, 46]. Notably, compilers

for non-CKKS schemes like GSW and BGV/BFV have been developed. Tools for C++

program like Cingulata [39, 40], E3 [44], Marble [43], Google’s transpiler [47] target general-

purpose programming, while RAMPARTS [38] and ALCHEMY [45] focus on optimizing

arithmetic computations and parameter settings, respectively. The Porcupine compiler [46]

and HECO [42] enhance data layout for vectorized HE kernels, with Coyote [48] introducing

FHE-aware vectorization for broader application scopes. Despite these advancements, there

is a gap in addressing RNS-CKKS scale management, which this work aims to fill by

proposing error-latency-aware scale management specifically for CKKS schemes. DaCapo

[49] proposes a new automatic bootstrapping placement on the top of HECATE [28]. This

improvement enlarges the computational capability of HECATE.

2.4.2 Domain-specific HE compilers

Specific domains such as DNN inference have also seen dedicated HE compiler developments,

including CHET [27], nGraph-HE [34, 35], and AHEC [50], which enable privacy-preserving

deep learning. These compilers, like CHET [27], optimize the data layout for encrypted

data, whereas nGraph-HE [34, 35] and AHEC [50] extend support for various frontends

and backends to enhance usability and performance. Notably, nGraph-HE introduces ’lazy

rescaling,’ an optimization for CKKS that minimizes rescaling operations. This work has

potential applications in existing domain-specific compilers, enhancing their performance

21

through the proposed static scale management strategies, thereby benefiting a wider range of

applications.

2.4.3 RNS-CKKS Algorithm and Acceleration

Several works propose RNS-CKKS algorithm improvements [51, 52, 53, 54, 55] and

accelerations [56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66]. Han and Ki [51] propose a new

RNS decomposition method that reduces the time complexity of rotation and ciphertext

multiplication, and also propose a new bootstrapping method that employs double angular

formula. Lee et al. [52] improves the bootstrapping operation by employing the inverse

sine function and a new approximation algorithm. Bossuat et al. [53] proposes a double-

hoisting algorithm for matrix multiplication, reducing the number of compute-intensive NTT

operations during rotation. On the other hand, Bossuat et al. [54] propose a new sparse secret

encapsulation that switches the secret key during bootstrapping, allowing better security by

employing dense secret. Lee et al. [55] improves the rotation key generation to dynamically

generated by a single root key, reducing the size of key set. This algorithmic improvement

of RNS-CKKS can improve the FHE libraries and its application is orthogonal to the scale

management.

Recent works that accelerate RNS-CKKS on GPU [56], FPGA [57, 62, 63, 65], and

ASIC [58, 59, 60, 61, 64, 66] also improve the performance a lot. Jung et al. [56] proposes a

first GPU implementation of FHE algorithms. They analyzes the bottleneck of the algorithm

and then propose a memory-centric optimization over GPU. Kim et al. [57] proposes an

accelerator on FPGA for NTT operation that takes the majority of computation in FHE.

HEAX [63] also proposes NTT acceleration on FPGA, utilizing the multiple levels of

parallelism from residue-polynomial-level to ciphertext-level. FAB [62] improves the FHE

acceleration on FPGA to allow the larger parameters that are compatible with bootstrapping.

22

Poseidon [65] further improves the NTT implementation and also the automorphism operation

in rotation on FPGA implementation.

On the other hand, ASIC implementations tailor the datapath suitable to FHE operations.

F1 [61] proposes a fully-pipelined functional unit for automorphism and NTT operation. It is

designed as a wide-vector processor with specialized units, reducing data movement—which

is its main bottleneck—through a managed memory hierarchy and a compiler that optimizes

data reuse and scheduling. BTS [59] and CraterLake [60] improves F1 by reorganizing the

functional units and allow a large parameter that enables bootstrapping. ARK [58] proposes

a new functional unit that generates a twiddling factor for NTT and a part of evaluation keys

in runtime (on chip), so it reduces the memory pressure a lot from the other works. SHARP

[66] proposes to use a low rescaling factor parameter and small hardware word size that

allows efficient hardware design and shows that the smaller scale parameter can achieve

enough accuracy for a real-world problem. MAD [64] proposes a memory-aware design

technique that allows to use of a smaller on-chip scratchpad and cache, making the FHE

hardware design more viable. All of these hardware accelerations are orthogonal to the scale

management and code generation can be retargeted for the proposed accelerators.

2.4.4 Privacy-preserving Machine Learning

The Gazelle framework introduced a convolution algorithm tailored for homomorphic en-

cryption, as outlined in [67]. Subsequent studies, including [68, 69, 70, 71, 72, 73], have

applied this algorithm in Convolutional Neural Network (CNN) implementations. These

approaches often employ multi-party computation to handle non-linear functions within

secure computations, sacrificing some benefits of homomorphic encryption due to increased

communication overhead. [74] was the first to implement the standard ResNet-20 using

the RNS-CKKS fully homomorphic encryption scheme with bootstrapping, though the

23

extensive use of bootstrapping and convolution operations led to diminished performance. To

enhance application efficiency, [75] developed an optimized deep CNN model that reduces

bootstrapping times by integrating multiplexed packing and parallel convolution techniques.

HyPHEN [76] introduces an advanced convolutional neural network (CNN) construction

for fully homomorphic encryption (FHE), enhancing private inference by incorporating

novel convolution algorithms, data packing methods, and square activation. Despite these ad-

vancements, current privacy-preserving machine learning implementations remain manually

optimized and lack automatic scale management. Programmers must also manually manage

bootstrapping for each modification in waterline or model structure, increasing workload and

potentially leading to less efficient target programs. Scale management compiler can compile

the proposed PPML applications to automate the daunting scale management task.

24

Chapter 3

HECATE LANGUAGE AND TYPE SYSTEMS

This chapter introduces the HECATE language along with its operational semantics and type

systems, which are used to depict FHE programs and formalize the workings and restrictions

of FHE operations. This chapter aims to establish a structured framework that will help in

formally describing the optimization techniques discussed in subsequent chapters.

3.1 HECATE Language

Figure 3.1 presents the formal syntax of the HECATE language, which is generated and

utilized by the scale management compiler during the optimization process. The syntax

highlighted in the gray box outlines the scale management operations that are not present in

the original input program but are inserted by the scale management algorithm.

An HECATE program, Prg, consists of a series of functions F , which can be invoked

by an external driver. Each function is structured as a sequence of statements S, ended by

a return expression. Within the body of a function, HECATE strictly defines a series of

assignment statements, v := e. It is important to note that an RNS-CKKS program excludes

conditional or looping constructs like if-else statements and for-loops.

Each function argument v in HECATE must be assigned a scale type T or R. This type T

can be a real vector (real), plain (plain), or cipher (cipher). The real type denotes raw,

unencrypted data. The cipher type indicates a ciphertext, characterized by a scale m and a

depth d or a level l. Note that HECATE language can be used with two different types namely

25

Prg ::= F

F ::= func fid (v : T |R) {s;h}
S ::= ϵ | v := h |S;S
h ::= c | v |h+ h |h× h | − h | rotate(h, i) | rescale(h)

| modswitch(h)| upscale(h, m) | downscale(h)
T ::= real | cipher (m, d) | plain (m, d) |T → T

R ::= real | cipher (r) |R → R
v : variable id, fid : function id, c ∈ constants
i, l ∈ Z+, m, r ∈ R+

Figure 3.1: The formal syntax of the HECATE language adapted from [29, 30]. The syntax
with a gray box shows the scale management operations which is not used by a programmer.
A means a list of A. T and R means scale and reserve type, respectively.

scale type T and reserve type R. With scale type T and reserve type R, the program would

use rescaling level (depth) d and ciphertext level l.

Depth d counts the number of scale-adjusting operations—rescale, downscale, and

modswitch—applied to a ciphertext. Essentially, depth d is a different approach to concep-

tualizing the ciphertext level l, which reduces from an initial level L with each rescale,

downscale, and modswitch operation, where d = L− l. Since the initial level L is determined

after scale management and isn’t known until compilation, HECATE uses depth d, which

increases from 0, as opposed to level l, which decreases from L.

Expressions in FHE, denoted as h, could be constants, variables, binary operations

(addition and multiplication), negation, or rotation. Subtraction is executed using negation,

while division is handled by multiplying by the inverse of the divisor. The rotate operation,

rotate(h, i), specifically involves shifting vectored data within a ciphertext h by an offset i.

HECATE language simplifies the programmer’s task by abstracting away the need to

manually code low-level scale management operations like rescale, modswitch, upscale,

and downscale. The rescale(h) operation decreases the scale by a predefined rescaling factor

R and increments the depth by one. modswitch(h) does not affect the scale but increases the

26

depth by one. The upscale(h, i) operation, effectively multiplying by a unit with an arbitrary

scale, raises the scale of h by i but does not alter the depth. The downscale(h) operation,

which combines upscale and rescale, adjusts the scale down to a specified waterline. The

detailed operational semantics of the HECATE language are available in §3.3.

3.2 Scale Type Systems

This section describes scale type system of HECATE language without explaining reserve

type system. Because reserve type system requires an understanding of the concept of reserve,

the details of reserve type system will be explained in §6.3.

Figure 3.2 outlines the typing rules of the HECATE language. This type system is

specifically crafted to meet and uphold the constraints of the RNS-CKKS encryption scheme,

as detailed in Table 2.2, including the Signal-to-Noise Ratio (SNR)-based, noise-aware

waterlines outlined in §5.2. The type soundness of the HECATE language ensures that a

program that is correctly typed will not breach any of the stipulated RNS-CKKS constraints.

A provisional proof of this is provided in §3.4.

The scale type system incorporates the operation-wise minimal scale constraints effectively.

Crucially, three specific rules—Equation MulCC for ciphertext multiplication, Equation Rot

for rotation, and Equation RS for rescaling—mandate certain minimum scales or waterlines:

mrelinearize for ciphertext multiplication, mrotation for rotation, and mrescale for rescaling.

In general, waterline constraints from EVA and HECATE assume mrelinearize =

mrescale = mrotation = W . On the other hand, ELASM assumes fine-grained operation-wise

minimal scale constraints. The mrelinearize waterline is naturally met as the multiplication

of ciphertexts inherently boosts the scale. However, meeting the fine-grained, noise-aware

waterline constraints requires defining the waterlines mrotation and mrescale, proportional to

nrotation and nrescale respectively. The waterlines are computed based on the given constants

27

Γ ⊢ e : T Under context Γ, e has type T . Γ ⊢ s : Γ′ Under context Γ, s produces context Γ′.

Γ ⊢ e : T

Γ ⊢ v := e : Γ, v : T
(Asn)

Γ ⊢ s : Γ′ Γ′ ⊢ s′ : Γ′′

Γ ⊢ s; s′ : Γ′′ (Stm)

Γ, v : T ⊢ s : Γ′ T ∈ {real, cipher(m, 0)} Γ′ ⊢ e : U

Γ ⊢ func fid (v : T) {s; e} : T → U
(Fun)

Γ ⊢ c : real
(Const)

Γ ⊢ h : real

Γ ⊢ −h : real
(NegR)

Γ ⊢ h : cipher(m, d)

Γ ⊢ −h : cipher(m, d)
(NegC)

Γ ⊢ h1 : real Γ ⊢ h2 : real

Γ ⊢ h1 ⊕ h2 : real
(BinR)

Γ ⊢ h1 : cipher(m, d) Γ ⊢ h2 : scale(m, d)

Γ ⊢ h1 + h2 : cipher(m, d)
(Add)

Γ ⊢ h1 : cipher(m, d) Γ ⊢ h2 : plain(m′, d)

Γ ⊢ h1 × h2 : cipher(mm′, d)
(MulCP)

Γ ⊢ h1 : cipher(m, d) Γ ⊢ h2 : cipher(m′, d) mm′ ≥ mrelinearize

Γ ⊢ h1 × h2 : cipher(mm′, d)
(MulCC)

Γ ⊢ h : cipher(m, d) m ≥ mrotation

Γ ⊢ rotate(h, l) : cipher(m, d)
(Rot)

Γ ⊢ h : cipher(m, d) mrescale ≤ m ≤ mrescale ·R
Γ ⊢ downscale(h) : cipher(mrescale, d+ 1)

(DS)

Γ ⊢ h : cipher(m, d) m
R

≥ mrescale

Γ ⊢ rescale(h) : cipher(m
R
, d+ 1)

(RS)
Γ ⊢ h : scale(m, d)

Γ ⊢ modswitch(h) : scale(m, d+ 1)
(MS)

Γ ⊢ h : real

Γ ⊢ upscale(h,m) : plain(m, 0)
(USR)

Γ ⊢ h : cipher(m, d) m′ ≥ m

Γ ⊢ upscale(h,m′) : cipher(m′, d)
(USC)

Figure 3.2: Typing rules of the HECATE language with scale type reproduced from [29].
mrescale means the minimal scale required by a rescale operation and mrotation means the
minimal scale required by a rotate operation. scale includes cipher and plain types, and
⊕ includes +, ×.

(called SNR) and the noises associated with the rotate and rescale operations. Due to the

noise level nrotate being influenced by the ciphertext level—which is not predetermined prior

to scale management— ELASM accounts for this by using a worst-case scenario estimate.

28

3.3 FHE Operational Semantics

The runtime systems of HECATE use a set of comprehensive rules to define the big-

step operational semantics, which guide the execution of homomorphic encryption (HE)

operations.

The HE semantics function H captures the meaning of HE expressions h, as detailed in

Figure 3.1.

⟨v := h, s⟩ 7→ s[v 7→ H[[h]]s]
(3.1)

This equation shows how an assignment operation updates the state s by assigning the result

of the HE expression h evaluated under s to the variable v.

⟨S1, s⟩ 7→ s′

⟨S1;S2, s⟩ 7→ ⟨S2, s′⟩
(3.2)

Here, if the execution of statement S1 in state s leads to a new state s′, then the execution

continues with the next statement S2 in the new state s′.

⟨S, s⟩ 7→ s′ H[[h]]s′ = o

⟨S;h, s⟩ 7→ halt(o)
(3.3)

This final rule specifies that if the execution of a sequence of statements S results in a state s′,

and evaluating the expressions h in this state yields outputs o, then the program halts and

outputs o.

Operand space: A constant c ∈ Vector stands for a constant vector of floating-point

numbers, while a variable x ∈ Var represents a variable name that can hold operands for

homomorphic encryption (HE) operations. An operand o is an element of the operand space

29

Table 3.1: The operational semantics of HE operations reproduced from [29]. Case represents
the abbreviation of each operation. Semantics describes how the HE semantics functionH
maps an HE expression h and a state s to operand spaceO. Condition restricts the application
of the semantics functionH to satisfy the interface of an HE library.

Case Condition
Semantics

∗
m ≥ 1, 0 < l < L, |vi| ≤ Rl, m ≥ mop

const
c ∈ V ector

H[[c]]s = Rk[[c]]

var
x ∈ V ar, s x = o ∈ O

H[[x]]s = o

encode
H[[h]]s = Rk[[v]], m ≥ 1

H[[encode(h,m)]]s = (P[[mv]], m, L)

encrypt
H[[h]]s = (P[[v]], m, l)

H[[encrypt(h)]]s = (C[[v + nrescale]], m, l)

negate
H[[h]]s = (C[[v]], m, l)

H[[−h]]s = (C[[−v]], m, l)

addcp
H[[h1]]s = (C[[v1]], m, l), H[[h2]]s = (P[[v2]], m, l)

H[[h1 + h2]]s = (C[[v1 + v2]], m, l)

addcc
H[[h1]]s = (C[[v1]], m, l), H[[h2]]s = (C[[v2]], m, l)

H[[h1 + h2]]s = (C[[v1 + v2]], m, l)

mulcp
H[[h1]]s = (C[[v1]], m1, l), H[[h2]]s = (P[[v2]], m2, l)

H[[h1 × h2]]s = (C[[v1v2]], m1m2, l)

mulcc
H[[h1]]s = (C[[v1]], m1, l), H[[h2]]s = (C[[v2]], m2, l)

H[[h1 × h2]]s = (C[[v1v2 + nrelinearize]], m1m2, l)

rotate
H[[h]]s = (C[[v]], m, l), v′j = v(i+j)%k, 1 ≤ j ≤ k

H[[rotate(h, i)]]s = (C[[v′ + nrotate]], m, l)

rescale
H[[h]]s = (C[[v]], m, l)

H[[rescale(h)]]s = (C[[v + nrescale]], m/R, l − 1)

downscale
H[[h]]s = (C[[v]], m, l), m/R ≤ m′ ≤ m

H[[downscale(h,m′)]]s = (C[[v + nrescale]], m, l − 1)

modswitchp
H[[h]]s = (P[[v]], m, l)

H[[modswitch(h)]]s = (P[[v]], m, l − 1)

modswitchc
H[[h]]s = (C[[v]], m, l)

H[[modswitch(h)]]s = (C[[v]], m, l − 1)

upscaler
H[[h]]s = Rk[[v]], m ≥ 1

H[[upscale(h,m)]] s = H[[encode(h,m)]] s

upscalec
H[[h]]s = (C[[v]],m′, l), o = (P[[[1]]],m, l), m ≥ 1

H[[upscale(h,m)]]s = H[[ho]]s

30

O, which includes real-valued vectors, plaintexts and ciphertexts, each paired with a scale

and a level. Specifically, O is defined as O : Rk ∪ P × R× Z+ ∪ C × R× Z+. Here, Rn refers

to vectors of real values where n indicates the number of slots in a packed ciphertext. P

and C denote the plaintext and ciphertext spaces as defined by the encryption parameters,

respectively. Both plaintexts and ciphertexts require a scale m ∈ R and a level l ∈ Z+, as

explained in §2.1. The outcome of any HE operation is also an element of this operand space

O.

HE semantics function: Table 3.1 outlines the semantics of HE operations. A homomorphic

expression (h) symbolizes the HE operations. To explain the semantics of HE operations, we

establish a state function s ∈ S : Var → O and an HE semantics function H : h → S → O.

The function Rk[[c]] embeds vector representations c into a k-dimensional real-valued vector.

Additionally, P[[v]] and C[[v]] embed a real vector v into a plaintext and ciphertext, respectively.

Although encoding and encrypting operations are foundational for utilizing other HE

operations, these operations are typically not visible in the program as encryption should

occur prior to program execution and encoding is managed within the upscale operation. The

scale and level of a resultant ciphertext depend on the operands involved and the operation

conducted. Operations like negate and rotate preserve the scale and level of the ciphertext

operand, and addition maintains the scale and level of operands, requiring that operands share

the same scale and level for the result to remain consistent. For multiplication, the resulting

scale equals the product of the operand scales.

rescale, modswitch, and downscale operations adjust the encryption parameters of an

operand. A rescale operation diminishes the scale of the operand by a rescaling value and

decreases the level. A modswitch operation simply reduces the level of an operand without

altering its scale. A downscale operation decreases the scale by an arbitrary amount.

31

An upscale operation functions differently for a ciphertext and a constant vector. For a

ciphertext, upscale modifies the scale by multiplying it by an identity value encoded with a

specified scale. For a constant vector, the upscale operation encodes the vector to a plaintext

value.

3.4 Type Soundness

The type soundness of the HECATE language ensures that a program that is correctly typed

can be executed without breaking the rules of homomorphic encryption (HE) operations, as

detailed in Table 3.1. This document outlines the principles of type soundness for HECATE

language and introduces a concise overview of the proof.

Definition 1 (Type abstraction). Suppose Γ is a typing context and s is a runtime state. Then, Γ
abstracts s at an initial level L, noted as Γ ≈L s for a specified L, if the following condition is met:

Γ ⊢ e :

real ifH[[e]]s = Rn[[v]]

plain(m,L− l) ifH[[e]]s = (P[[v]],m, l)

cipher(m,L− l) ifH[[e]]s = (C[[v]],m, l)

(3.4)

This definition delineates how static types abstract over runtime properties, ensuring that

the type system reflects these runtime characteristics. To adhere to certain constraints, L must

be chosen with care, particularly to ensure that m×Rd × |xi| ≤ RL, where xi = vi/m must

hold true, and all values on the left side of this inequality are known at compile time except

for xi. The maximum value of xi must be specified by the programmer to avoid overflow.

Theorem 2 (Progress). Assuming any Γ, s, and L where Γ ≈L s is valid, if Γ ⊢ S; e : T , then the
system will either progress to a new state ⟨S′; e, s′⟩ or halt with output o.

To demonstrate theorem 2, it’s necessary to focus solely on the expression assignment

case (Equation 3.1), as other statements (Equation 3.2) and function body (Equation 3.3)

32

behaviors are covered by theorem statement itself. Each expression can be evaluated by H

following the typing rules illustrated in Figure 3.2.

Theorem 3 (Type Preservation). Assume any Γ, s, and L where Γ ≈L s holds. If the system transitions
from ⟨S1;S2; e, s⟩ to ⟨S2; e, s

′⟩ and Γ ⊢ S1 : Γ′, then Γ′ ≈L s′.

Theorem 3 can be proven similarly to the theorem 2, utilizing case analysis on the typing

rules.

33

Chapter 4

PERFORMANCE-AWARE SCALE OPTIMIZATION

This chapter introduces HECATE [28], a sophisticated compiler framework for fully homo-

morphic encryption (FHE) tailored to precisely adjust the scales of ciphertexts considering

their rescaling levels and potential performance impacts. HECATE adopts a comprehensive

strategy to refine scale management in ways not previously accomplished. Initially, HECATE

introduces a new parameter-switching operation called downscale. Uniquely, this operation

allows for the rescaling of a ciphertext even if its scale falls below the sum of the rescaling

factor and a set threshold, known as the waterline, thus enabling a more proactive rescaling

approach.

HECATE further enhances its approach by closely examining the ciphertexts and their

related FHE operations, grouping them into scale management units based on shared scales

and rescaling levels. This method simplifies the scale management process. Following this,

HECATE develops a variety of scale management strategies, carefully evaluating each to

determine the most efficient scale management plan. This step goes beyond mere efficiency

optimization; it strategically considers the placement of rescaling operations to improve the

overall performance and precision of FHE applications.

Additionally, recognizing the importance of adhering to the scale and rescaling level

constraints imposed by FHE operations, HECATE incorporates a newly crafted type system,

explained in §3. This system is cleverly designed to check that the scales and rescaling levels

of FHE operands are compatible, ensuring that scale management complies with essential

34

computational requirements and upholds the integrity and security of the encrypted data.

Through these advancements, HECATE marks a significant advancement in the FHE field,

providing a robust framework that elevates the scalability, performance, and practicality of

privacy-preserving computations.

4.1 Necessity of Performance-aware Scale Optimization

The existing scale management compiler, EVA [26], manages scale to meet the three

constraints described below.

• (C1) The scale of a ciphertext must be smaller than the coefficient modulus Q;

• (C2) The scale must be greater than the waterline to prevent message corruption; and

• (C3) The level of operands for multiplications and additions must match. (The addition

must match the scale of operands additionally.)

EVA’s scale management approach has three main drawbacks that prevent it from achieving

the best possible performance for fully homomorphic encryption (FHE) programs.

The first limitation is that EVA’s rescaling method is reactive and only uses a fixed scaling

factor. In EVA, a rescale operation is only added when the resulting scale after rescaling is

still greater than a predefined value called the waterline. This means that EVA only reduces

the scale after a multiplication operation has already increased it. Additionally, EVA’s rescale

operation can only decrease the scale by a fixed amount, known as the scaling factor. As

a result, EVA is limited to inserting the rescale operation only when the scale exceeds the

product of the scaling factor and the waterline. This approach misses out on chances to

optimize the scale proactively. Later on, we will introduce a new rescaling operation that can

change the scale by any desired amount, allowing for more effective scale management.

The second limitation is that EVA analyzes the scale and level separately. To satisfy both

the scale-related constraints (C1 and C2) and the level-related constraint (C3), EVA uses a

35

two-step process. First, it performs waterline rescaling to add rescale operations based on the

scale. Then, using the code that now includes the rescale operations, EVA adds modswitch

operations where necessary to handle the level constraint. In simpler terms, EVA first focuses

on getting the scale right and then separately adjusts the level to meet the level requirement.

We will demonstrate later that looking at both the scale and level together creates new

opportunities for better scale management, allowing an FHE compiler to find more optimal

solutions.

The third limitation is that EVA’s scale management doesn’t take performance into

account. EVA assumes that the fixed-factor rescale operation is the only way to manage the

scale, and it believes that a lower scale always leads to better performance. Because of this,

EVA puts all its effort into lowering the scale. However, we will show that when more flexible

rescaling options are available, a lower scale doesn’t necessarily mean better performance. In

fact, the cost of an FHE operation goes down as the rescaling level goes up. For example,

multiplication at level 1 is 4 times faster than at level 0. To optimize performance, an FHE

compiler should think about alternative scale management strategies that might result in a

higher scale but allow more of the computations to happen at higher levels, which are faster.

4.2 Overview of Performance-aware Scale Optimization

This work introduces HECATE, a new compiler for fully homomorphic encryption (FHE)

tailored for RNS-CKKS applications, focusing on advanced scale management strategies.

HECATE enhances performance-aware scale management through several innovative ap-

proaches:

(1) It introduces a new scale management operator called downscale along with a

proactive rescaling scheme. This operator allows for the adjustment of a ciphertext’s scale to a

specific target, known as the waterline, thereby enabling more deliberate control over scaling

36

80
70

60

50

40
30

20

10

0

scale

t

x
L0

y
L0

x2
L0

z2
L0

z2
L1

z3
L1

z
L1

y2
L0

z
L0

Waterline: 20

rescaling

modswitch

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

(a) Existing HE compiler (EVA)

80
70

60

50

40
30

20

10

0

scale

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Waterline: 20

x
L0

y
L0

x2
L0

z
L0

z2
L0

z2
L1

z3
L1

y2
L0

z
L1

downscale

rescaling

(b) Proactive Rescaling (PARS)

80
70

60

50

40
30

20

10

0

scale

t0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

x
L0

y
L0

x2
L0

z
L0 z2

L1

z3
L1

y2
L0

z
L1

downscale

Waterline: 20

(c) Scale management space explorer (SMSE)

Figure 4.1: Comparison of how EVA and HECATE manage scale for a sample program that
computes (x2 + y2)3, an operation involved in calculating the root mean square, reproduced
from [28]. The rescale operation decreases the scale by 260 and raises the rescaling level by
one. The modswitch operation simply raises the level, and the downscale operation lowers
the scale to the waterline and also increases its level.

37

operations. (2) It develops a new type system that simultaneously analyzes both the scale and

rescaling level of ciphertexts, facilitating more integrated and efficient scale management. (3)

It establishes a method for exploring different scale management strategies, known as Scale

Management Space Exploration (SMSE), which includes performance estimation to identify

the most effective approaches.

Solution 1: Proactive Flexible-Factor Scale Management. HECATE introduces the downscale

operator, which uniquely adjusts the scale of a ciphertext by a specific amount, rather than

incrementally. This operation is detailed in the semantics shown in Table 3.1, where it reduces

the ciphertext’s scale precisely to the waterline W and increments the rescaling level by

one. This proactive approach allows HECATE to adjust the scale before operations like

multiplication, which contrasts with EVA’s reactive method which scales down only after

multiplication has increased the scale excessively. For example, as shown in Figure 4.1b,

HECATE can apply downscale to adjust the scale of z to the waterline before multiplication,

resulting in a final scale for z3 that is significantly lower than what is achieved with EVA’s

approach.

Solution 2: A New Type System for Scale and Level Management. HECATE proposes a novel

type system that considers the scale and level of ciphertexts together, enabling more strategic

scale management. This integrated approach differs from EVA’s, which typically handles

scale adjustments first and then addresses any resulting level discrepancies. This holistic view

allows HECATE to explore various scale management possibilities more effectively.

For instance, in the computation of (x2 + y2)3, Figure 4.1c illustrates another strategy

where downscale is applied even before the initial multiplication of z∗z∗z, where z = (x2+y2).

This and other scale management strategies demonstrated in Figure 4.1 show that different

uses of rescale, modswitch, and downscale can lead to varied cumulative scales and

38

potentially impact performance. The type system aids HECATE in safely navigating the scale

management landscape while adhering to RNS-CKKS constraints.

Solution 3: Scale Management Space Exploration (SMSE) with Performance Estimation.

HECATE also innovatively explores the scale management landscape using a hill-climbing

method to optimize performance. It performs static analysis to determine scale management

units—clusters of operations where scale and level are managed collectively, minimizing

the need for mid-sequence adjustments. HECATE iteratively constructs scale management

plans, adjusting one parameter at a time from the previous plan, and integrates scale

management operators into FHE codes that satisfy the constraints (C1-C3). It then evaluates

the performance of each plan, selecting the most effective for further refinement.

Figure 4.1c displays the scale management plan predicted to perform optimally. Notably,

although plan (c) has a higher cumulative scale than plan (b), the early use of downscale per-

mits subsequent multiplications to occur at a consistent level, enhancing overall performance.

Overview. Figure 4.2 illustrates the design of the HECATE framework. HECATE is built

on top of MLIR to ensure it can be extended to support a variety of frontends (such as ONNX-

MLIR, NumPy) and backends (beyond SEAL) in future developments. HECATE offers a

Python frontend, making it simpler to write FHE programs. The HECATE intermediate

representation (IR) generator then converts programs written in this Python frontend into

HECATE language, as discussed in §3. Following this, HECATE organizes the program into

scale management units as outlined in §4.3.

To navigate the scale management space, the planner (§4.4.1) creates a series of new

plans based on the most effective plan from the previous cycle. With these plans, HECATE

then produces accurate and efficient FHE codes that adhere to RNS-CKKS constraints (§4.5).

Additionally, the performance estimator (§4.4.2) evaluates the cost of these codes to inform

the next iteration of planning. For the final output, HECATE includes a SEAL dialect, which

39

Scale Mgmt Unit Gen (§4.3)

Scale Management Space Explorer

Performance Estimator (§4.4.2)

Scale Mgmt Code Gen (§4.5)

HECATE IR Gen

%x
%y

%x2
%y2 %z2 %z3%z

id:0 id:1 id:2 id:3 id:4

%x2 = mul %x, %x
%y2 = mul %y, %y
%z = add %x2, %y2
%z2 = mul %z, %z
%z1 = downscale %z
%z21 = rescale %z2
%z3 = mul %z21, %z1
return %z3

%x2 = mul %x, %x
%y2 = mul %y, %y
%z = add %x2, %y2
%z1 = downscale %z
%z2 = mul %z1, %z1
%z3 = mul %z2, %z1
return %z3

def rms(x, y):
 x2 = x*x
 y2 = y*y
 z = x2+y2
 z3 = z*z*z
 return z3

Unit cost (b) (c)

𝑙𝑒𝑣𝑒𝑙	0 mul 5 3 2
𝑙𝑒𝑣𝑒𝑙	0 add 1 1 1
𝑙𝑒𝑣𝑒𝑙	1 mul 2 1 2

Rescale 2 1 0
Modswitch 2 0 0
Downscale 2 1 1
Total cost 22 17

Planner (§4.4.1)

(0,1):0,(1,2):0
(2,3):0,(3,4):0
(2,4):0

(0,1):0,(1,2):0
(2,3):1,(3,4):0
(2,4):1

Plan c

SEAL Dialect

LLVM IR

%x2 = mul %x, %x
%y2 = mul %y, %y
%z = add %x2, %y2
%z2 = mul %z, %z
%z3 = mul %z2, %z
return %z3

HECATE CompilerPython frontend

Plan bPlan b Plan c

Figure 4.2: Design of the HECATE compiler framework reproduced from [28]. The example
code uses the program in Figure 4.1. Plan (b) and (c) are the same with Figures 4.1b and 4.1c.

40

serves as the backend for the FHE program and enhances memory efficiency by analyzing

data usage.

4.3 Scale Management Unit Generation

For scale management space exploration, HECATE examines a HECATE language program

and creates scale management units where the scale and level of the data can be managed

together, simplifying the search space. algorithm 1 details HECATE’s three-phase algorithm

for analyzing scale management units using a custom Group data structure. The Group.insert(res)

function adds and returns a new set which can be accessed via “res." Group[v] locates a set

associated with a value v. Group.merge(A, B) combines sets A and B but retains the key of A.

Group.split(A, v) separates and returns v from A.

The initial phase, known as the definition-aware merge step (Line 3-13), conducts a

forward program analysis, grouping values that share the same scale and level into the same

unit. For instance, a plaintext addition (+p) does not modify the scale and level of a ciphertext.

Similarly, a ciphertext addition (+c) maintains the existing scale and level, provided the

operands are identical in these aspects. In such cases (Line 6-7), HECATE places the resulting

plaintext/ciphertext and its operands in the the same unit.

Conversely, for scenarios like a ciphertext addition where the operands have differing

scales/levels necessitating a scale management operation, or a ciphertext multiplication that

alters the resulting ciphertext’s scale, HECATE sets up a new scale management unit unless

an existing case matches the sthe ame operator and operand group combination (Line 8-12).

For example, as depicted in Figure 4.3a, the definition-aware merge step groups (x2,

y2, and x2 + y2) with the the same scale/level into a single unit. The subsequent operation

(x2 + y2)z causes a scale increase, necessitating a separate unit.

41

Algorithm 1: Scale management unit analysis [28]
Input: Func: Function of an HE application
Output: Group: Mapping from an ciphertext to SMU

1 Function ScaleMgmtUnitGrouping (Func) :
2 Group← {} MergeDef← {} // Definition-aware Merge Step
3 foreach (op, arg0, arg1, res) ∈ Func.getBody() do
4 G← Group.insert(res)
5 G0← Group[arg0], G1← Group[arg1]
6 if op ∈ {+p} ∨ (op ∈ {+c} ∧ G0 = G1) then
7 Group.merge(G, G0)
8 else
9 def← (op, G0, G1)

10 if def ∈ MergeDef then
11 Group.merge(G, MergeDef[def])
12 else MergeDef[def]← G
13 end
14 OpSplitDef← {} // Operation-aware Split Step
15 foreach G ∈ Group do
16 foreach (op, arg0, arg1, res) ∈ G do
17 Gres← Group.split(G, res)
18 def← (op, G)
19 if def ∈ OpSplitDef then
20 Group.merge(Gres, OpSplitDef[def])
21 else OpSplitDef[def]← Gres
22 end
23 end
24 UserSplitDef← {} // Use-aware Split Step
25 foreach G ∈ reverse(Group) do
26 foreach (op,arg0,arg1,res) ∈ G do
27 Gres← Group.split(G,res)
28 Guse← {}
29 foreach user ∈ res.getUsers() do
30 Guse← Group[user]
31 end
32 def← (G, Guse)
33 if def ∈ UserSplitDef then
34 Group.merge(Gres, UserSplitDef[def])
35 else
36 UserSplitDef[def]← Gres
37 UserSplitDef[(G, Gres]← Gres
38 end
39 end
40 end

42

x y

𝑥! 𝑦!

𝑥! + 𝑦!

𝑥! + 𝑦! 𝑧id:3

id:2

id:1 z
(a) Definition-aware merge

𝑥! 𝑦!

𝑥! + 𝑦!

𝑥! + 𝑦! 𝑧id:3

id:4

id:2

id:1 x y z
(b) Operation-aware split

𝑥! 𝑦!

𝑥! + 𝑦!

𝑥! + 𝑦! 𝑧id:3

id:4

id:2

id:1 x y zid:5
(c) User-aware split

Figure 4.3: Scale management unit analysis example for (x2 + y2)z, reproduced from [28].

43

The second step (Line 14-23) further divides the scale management units created in the

first step into smaller groups based on the type of operation (refer to Line 18, which uses op

as a key). This phase specifically aims to separate operations involving multiplication from

those that do not. The logic behind this separation is that multiplication operations generally

result in a scale significantly larger than W 2, providing an opportunity for proactive scale

management. Since the scale of the multiplication operands is larger than W , the resulting

scale of these operations will consistently exceed W ×W .

Using the same example shown in Figure 4.3a, where the first two operations are

multiplications (×) and the third is an addition (+), the operation-aware split step divides the

unit containing (x2, y2, and x2 + y2) into two separate units: one for (x2, y2) and another for

(x2 + y2), as illustrated in Figure 4.3b.

The final user-aware split step (Line 24-39) further segments the scale management units.

This stage conducts a backward analysis to determine how each ciphertext is "used" in the

program and assigns ciphertexts that are utilized differently to distinct units. This analysis

helps to tailor scale management strategies more effectively based on the specific application

of each ciphertext.

In the ongoing example from Figure 4.3b, the variables x and y are used in the operations

x2 and y2 respectively, while z is used in the operation (x2 + y2)z. The third step splits these

into separate units: one containing (x, y) and another for (z). Figure 4.3c displays the final

arrangement of scale management units.

4.4 Scale Management Space Explorer

As shown Fig. 3, HECATE’s Scale Management Space Explorer (SMSE) consists of three

components: scale management planner (§4.4.1), code generator, and performance estimator

(§4.4.2). The detailed algorithm of the code generator will be further discussed in §4.5

44

4.4.1 Scale Management Planner

The planner takes as input scale management units (see §4.3) and the best plan from the

previous iteration, then generates a set of new scale management plans. Each plan assigns

a degree of optimization to connections between scale management units, representing

the number of additional scale management operations such as rescale, downscale, and

modswitch.

The planner employs the steepest ascent hill-climbing method to create new scale

management plans. Starting with the best plan from the last iteration, the planner creates

new plans by increasing the optimization degree by one at different points. For example, if a

program is divided into three scale management units—0, 1, and 2—with edges (0,1) and

(1,2), and the best existing plan is {(0, 1): 1, (1, 2): 0}, the new plans might be {(0, 1): 2, (1,

2): 0} and {(0, 1): 1, (1, 2): 1}. Essentially, the planner tries to add more scale management

operations than in the previous iteration.

Each plan specifies (a) where to place scale management operations and (b) how many

operations to place at each location. Based on the scale of an operand, the planner determines

(c) which type of scale management operation to apply. If the scale is greater than the

waterline after rescale, the planner opts for rescale. If rescale is not suitable but the scale

can still be reduced, downscale is applied. Otherwise, modswitch is chosen. This strategy

relies on the operand’s scale information and must adhere to RNS-CKKS constraints, so

the planner uses the proactive rescaling algorithm (PARS, algorithm 2), detailed in the

subsequent section, to ensure the generated FHE codes are correct.

After the code generation step, the latency of a generated code is estimated by a

performance estimator. The estimated latency is used to the “steepest” ascent plan which

means the plan with minimal latency among the candidate plans generated in the the same

45

iteration. The plan with minimal latency will be used to generate the new plans in the next

iteration.

4.4.2 Performance Estimator

The performance estimator statically calculates the expected execution time of a HECATE

language program. Running all candidate programs dynamically would be prohibitively

expensive. The latency of an FHE operation in RNS-CKKS depends on the level of the

operands and the polynomial modulus N , with the time complexity being linear or quadratic

to the level of the operands, and linear or log-linear to N , varying by operation type. Using

this insight, we profile the execution time of each FHE operation at different levels and N , as

shown in Figure 4.2. With this profiled per-level latency data for each FHE operation, the

performance estimator can predict the total execution time of a HECATE program, leveraging

the level information readily provided by HECATE’s type system.

4.5 Code Generation: Proactive Rescaling

The scale management code generation of HECATE, called proactive rescaling (PARS), is

done by term rewriting method based on rewriting rules presented in Figure 4.4. This section

depicts how the concrete code generation algorithm applies the rewriting rules.

Algorithm 2 outlines how HECATE integrates scale management operations to efficiently

manage the cumulative scale of each ciphertext. HECATE aims to minimize the overall scale

of the operands involved in each operation, thereby reducing the resultant cumulative scale.

The algorithm encompasses five phases: (a) encoding, (b) rescale analysis, (c) level matching,

(d) scale matching, and (e) downscale analysis. Additionally, HECATE incorporates an early

modswitch optimization technique similar to what is used in EVA, positioning modswitch

earlier in the process.

46

Algorithm 2: Proactive rescaling algorithm (PARS) [28]
Parameter :R: Rescale Value
Parameter :W : Waterline Value
Input: Op: The operation type of HE operation.
Input: arg0, arg1: Argument ciphertext of an HE operation.
Input: res: Result ciphertext of an HE operation.

1 Function PARS (op, arg0, arg1, res) :
2 // (a) Encode
3 if op ∈ {+,×} then
4 // Without Loss of Generality
5 if arg0.type = real then
6 arg0.type← plain (arg0, W)
7 // (b) Rescale Analysis
8 // Without Loss of Generality
9 if arg0.scale > W ·R then

10 arg0← rescale (arg0)
11 // (c) Level Match
12 // Without Loss of Generality
13 if op ∈ {+,×} ∧ arg0.level < arg1.level then
14 if arg0.scale = W then
15 arg0← modswitch (arg0)
16 else if arg0.scale > W then
17 arg0← downscale (arg0)
18 // (d) Scale Match
19 // Without Loss of Generality
20 if op ∈ {+} ∧ arg0.scale < arg1.scale then
21 arg0← upscale (arg0, arg1.scale)
22 // (e) Downscale Analysis
23 if op ∈ {×} ∧ arg0.scale * arg1.scale > W 2 ·R then
24 arg0← downscale (arg0)
25 arg1← downscale (arg1)
26 end

47

Γ ⊢ h : scale(m, d) Γ ⊢ h′ : scale(m′, d) m ·m′ < W 2 ·R

h× h′
rewrite−−−−→ downscale(h)× downscale(h′)

(DScale)

Γ ⊢ h : scale(m, d) m ≥W ·R

h
rewrite−−−−→ rescale(h)

(Rescale)

Γ ⊢ e : scale(m, d) Γ ⊢ e′ : scale(m′, d′) m > W d < d′

e⊕ e′
rewrite−−−−→ downscale(e)⊕ e′

(DMatch)

Γ ⊢ h : cipher(m, d) Γ ⊢ h′ : real

h+ h′
rewrite−−−−→ h+ upscale(h′,m)

(EncodeAdd)

Γ ⊢ e : scale(m, d) Γ ⊢ e′ : scale(m′, d′) m = W d < d′

e⊕ e′
rewrite−−−−→ modswitch(e)⊕ e′

(LMatch)

Γ ⊢ h : cipher(m, d) Γ ⊢ h′ : real

h× h′
rewrite−−−−→ h× upscale(h′,W)

(EncodeMul)

Γ ⊢ h : scale(m, d) Γ ⊢ h′ : scale(m′, d) m < m′

h+ h′
rewrite−−−−→ upscale(h,m′/m) + h′

(SMatch)

Figure 4.4: Rewriting rules for proactive rescaling. scale includes cipher and plain type.

(a) Encode. This initial step sets the scale for operands of the real type within binary

expressions. If an operand is real-type, HECATE converts it to plain-type with a scale set

at the waterline W .

(b) Rescale analysis. This phase adjusts the scale of operands if the resultant scale remains

above the waterline. Specifically, the rescale operation reduces the scale from m to m/R,

given the rescale factor R. Thus, if m > W × R, HECATE applies rescale to lower the

operand’s scale in binary expressions, ensuring the minimized scale still respects the waterline

constraint.

(c) Level match. This step ensures that both operands in binary expressions have the same

level, as required. If the scale of the operand with the smaller level equals the waterline,

HECATE employs modswitch to elevate the operand’s rescaling level, mimicking EVA’s

approach. If the scale is also above the rescale factor R, and if the smaller level’s scale is

48

below the waterline, HECATE opts for downscale to decrease the scale while raising the

rescaling level.

(d) Scale match. This phase addresses the scale requirements for addition operations,

ensuring that both operands share the same scale. Here, HECATE applies an upscale

operation to the operand with the lesser scale to equalize them.

(e) Downscale analysis. The final step determines whether applying

downscale to both operands of a multiplication could be advantageous. After the pre-

ceding steps, suppose two operands are of types scale(m, d) and scale(m′, d). One ap-

proach is to perform the multiplication first and then apply downscale, resulting in a type

(mm′/R, d+ 1). Alternatively, applying downscale to both operands before multiplication

could adjust their types to (W,d+ 1) each, and post-multiplication, the resultant type would

be (W 2, d + 1). HECATE chooses to apply downscale if mm′/R > W 2, optimizing the

operation’s outcome.

4.6 Evaluation of Performance-aware Scale Optimization

4.6.1 Experimental Setup

For performance evaluation, this study compares HECATE with the state-of-the-art EVA [26]

using various benchmarks. HECATE incorporates proactive rescaling (PARS, §4.5) and scale

management space exploration (SMSE, §4.4). This research also assesses the individual

benefits of these components. Overall, this study explores four different scale management

strategies:

• EVA [26] implements fixed-factor scale management and the waterline rescaling

algorithm, both of which are reconfigured within the HECATE framework.

49

• PARS employs the proactive rescaling scheme but does not include scale management

space exploration.

• SMSE focuses on scale management space exploration but does not incorporate

proactive rescaling. Instead, it adopts EVA’s waterline rescaling algorithm.

• HECATE [28] integrates both proactive rescaling and scale management space explo-

ration for comprehensive scale management.

For benchmarking, the following six applications were implemented and tested, using the

same benchmark set as EVA and CHET, except for SqueezeNet, and including an additional

test on MLP:

• Sobel Filter (SF) is a traditional edge detection algorithm that computes changes in an

image across vertical and horizontal directions using 3× 3 image gradient filters.

• Harris Corner Detection (HCD) identifies corner points in an image by calculating pixel

differences within a window.

• Linear Regression (LR) fits a linear equation to model the relationship between a

dependent variable and one or more independent variables.

• Polynomial Regression (PR) models nonlinear relationships using an n-th degree

polynomial equation, specifically employing a quadratic equation for this study.

• Multi-layer Perceptron (MLP) is a feed-forward neural network designed for image

classification, utilizing layers sized 784×100 and 100×10 with square activation

functions.

50

Table 4.1: RMS Error of the programs reproduced from [28]

Benchmark EVA PARS SMSE HECATE

SF 9.738E-04 3.799E-03 2.503E-04 3.680E-03
HCD 3.313E-03 1.675E-03 8.102E-04 3.265E-03
LR E2 2.296E-04 1.654E-04 6.493E-06 2.525E-03
PR E2 3.266E-03 1.748E-04 7.566E-04 1.333E-03
LR E3 2.742E-05 1.784E-03 7.107E-08 2.716E-04
PR E3 1.721E-04 5.713E-04 2.613E-03 1.788E-03
MLP 4.634E-04 6.040E-05 5.521E-05 3.257E-04
Lenet 1.126E-03 2.584E-04 5.004E-04 2.183E-03

Gmean 5.271E-04 4.823E-04 9.195E-05 1.390E-03

• LeNet-5 [77] is a convolutional neural network tailored for image classification, modified

from the original network to change the output channel of the second fully connected

layer to 64 and using a square function for activation.

Experiments were conducted using Microsoft SEAL (Release 3.5.9) on an Intel(R)

Core(TM) i7-8700 CPU @ 3.20GHz with 6 physical cores and 64GB RAM, maintaining a

128-bit security level for all tests. Benchmarking assumed a packed ciphertext with 214 slots.

The image processing benchmarks processed 4096 pixels from 64 × 64 images, regression

benchmarks utilized 16384 randomly generated inputs for each variable, and the deep learning

benchmarks used a random input from the MNIST dataset. The regression benchmarks

employed the gradient descent algorithm for 2 and 3 epochs.

4.6.2 Performance Evaluation

Figure 4.5 displays the lowest latency achieved for each benchmark while adhering to a

maximum error limit of 2−8. For all the evaluated schemes, this study tested 36 different

waterline settings and identified the optimal one in terms of latency that still maintained the

error within the set bounds. The precise root-mean-square error of the compiled programs

51

0

0.2

0.4

0.6

0.8

1

SF HCD LR E2 PR E2 LR E3 PR E3 ML P Lenet Gmean

La
te

nc
y

(N
or

m
ar

liz
ed

 to
 E

V
A

)

EVA PARS SMSE HECATE

Figure 4.5: Performance of 8 benchmarks with different scale management schemes: Sobel
Filter, Harris Corner Detection, Linear Regression and Polynomial Regression, Multi-layer
Perceptron, LeNet-5, reproduced from [28]. This work executes regression benchmarks with
two and three epochs (denoted as E2 and E3).

is detailed in Table 4.1. It’s important to note that a smaller error does not necessarily

indicate better exploration; it might simply mean that no better optimization that compromises

precision for improved performance was found.

The evaluation results demonstrate that HECATE significantly boosts the performance of

various homomorphic encryption (HE) applications through the use of PARS and SMSE. On

average, performance gains from PARS and SMSE are 13.38% and 21.36%, respectively,

with HECATE achieving an overall average performance improvement of 27.85%.

Speedup of PARS. While PARS generally results in a smaller cumulative scale, which

sets the initial level of the program, it does not always lead to speed improvements over EVA.

For benchmarks like SF, HCD, and LeNet, PARS enhances performance by reducing the

52

cumulative scales and thus the initial levels of the ciphertexts. However, for MLP, LR E2

and E3, and PR E2 and E3, PARS does not improve performance because the reduction in

cumulative scale does not significantly lower the necessary level, leaving the initial levels of

the ciphertexts unchanged. On average, PARS shows a 13.38% speed improvement over EVA.

Speedup of SMSE. SMSE consistently shows improvements over EVA. This is because

SMSE discards any optimization plan that results in estimated latencies slower than the

previous plan, ensuring that any change leads to a performance gain if the estimations are

accurate. As detailed in §4.6.4, the estimations are sufficiently precise, explaining the 21.35%

average speedup achieved by SMSE.

However, SMSE’s impact is minimal for benchmarks like SF, MLP, and LR E3. Similar

outcomes in other schemes for MLP and LR E3 suggest that EVA may already optimize well

for these applications. For SF, the limited number of scale management unit (SMU) edges

constrains the scope for scale management. Thus, the effectiveness of SMSE largely depends

on how it integrates with code generation strategies such as PARS.

Speedup of HECATE. HECATE outperforms other optimization approaches. For bench-

marks such as SF, HCD, and LR E3, HECATE significantly enhances performance by

simultaneously utilizing SMSE and PARS. The results for LR E2, PR E2, and PR E3 illustrate

how the approach to code generation influences HECATE’s speedup. While using PARS alone

does not enhance performance for these benchmarks, HECATE achieves better latency than

SMSE with waterline rescaling because the code generation strategy affects the effectiveness

of the optimization plan. The performance of LeNet highlights the influence of SMSE. Not

surprisingly, SMSE can effectively position the downscale operation and may target the same

optimization points as PARS. Consequently, even with waterline rescaling, SMSE is capable

of discovering a scale management plan comparable to HECATE. Overall, HECATE delivers

the highest average performance speedup, at 27.85%.

53

Table 4.2: Search space reduction reproduced from [28]. (uses: # of uses, SMU: # of scale
management units, epoch: # of exploration iterations, plan: # of explored spaces)

Bench
marks uses SMU Naive Hecate Reduction

Ratio
epoch plan epoch plan

SF 91 19 5 1093 5 229 4.773
HCD 164 19 34 16237 7 343 47.34
LR E2 186 44 13 6697 10 1189 5.632
PR E2 284 71 13 10225 10 1918 5.331
LR E3 278 66 12 9175 11 1981 4.631
PR E3 424 106 18 21625 12 3499 6.180
MLP 575 12 2 1726 2 37 46.65
Lenet 11735 48 43 1.48E6 6 721 2050

HECATE secures significant performance improvements through compiler optimizations

alone, without the need for additional hardware or changes to algorithms. These optimizations

can synergistically enhance the performance of modern hardware acceleration approaches

like HEAX [78], further boosting their efficiency.

4.6.3 Search Space Reduction

This section illustrates how generating scale management units (SMUs) can significantly

narrow down the search space for optimization. Without SMUs, every ciphertext uses within

a program would require individual optimization, vastly increasing the number of potential

plans. This expansion in the number of plans is exacerbated not only by the number of

connections (edges) in the program but also by each iteration (epoch) of the hill-climbing

algorithm used for optimization.

To assess how effectively SMU generation reduces the exploration space of the Scale

Management Space Exploration (SMSE), this study implemented a basic exploration strategy.

54

This naive approach utilizes the same hill-climbing algorithm but applies it directly to the

use-definition (use-def) edges within the program, without forming any SMUs.

Table 4.2 presents the comparative results between the naive scheme and HECATE.

For benchmarks like Sobel Filter (SF) and Multi-layer Perceptron (MLP), utilizing SMUs

does not decrease the number of epochs, indicating that the optimized plans affect only a

single-use SMU edge. However, these benchmarks benefit from having fewer units to manage.

In regression benchmarks such as Linear Regression (LR) E2, LR E3, Polynomial Regression

(PR) E2, and PR E3, the generation of SMUs by HECATE slightly reduces the number of

epochs required. These benchmarks feature several parallel operations that can utilize the

same scheduling, resulting in a modest reduction in epochs.

For benchmarks like LeNet and Harris Corner Detection (HCD), the reduction in epochs

is significant due to the high number of parallel operations these programs exhibit. The LeNet

results demonstrate that SMUs scale well with program size, showing that the compilation

time is influenced by the number of iterations during SMSE. Thanks to the search space

reduction (Table 4.2), the longest compilation time for HECATE is only 340 seconds,

compared to the 649 hours required by the naive scheme.

4.6.4 Performance Estimation

Performance estimation significantly influences the effectiveness of Scale Management Space

Exploration (SMSE). As demonstrated in Figure 4.6, the estimated latencies for various

configurations closely match the actual latencies of the compiled programs. The geometric

average of the relative error is 1.3%, with the maximum error reaching 4.8%. These findings

confirm that the straightforward estimation method outlined in §4.4.2 is adequate for SMSE.

The consistency in latency estimation is attributed to the inherent characteristics of

homomorphic encryption (HE) operations. These operations typically involve executing

55

y = 0.9884x + 11.175
R² = 0.9999

200

2000

20000

200000

200 2000 20000 200000

A
ct

ua
l l

at
en

cy
 (m

s)

Estimated latency (ms)

Figure 4.6: Comparison between estimated and actual latencies reproduced from [28]. The
comparison plots the data of 1152 different settings that uses 36 different waterlines for 8
benchmarks and 4 optimization schemes. The maximum relative error is 4.8%

lengthy and regular computational loops, which minimize the variance in latency per iteration

through statistical effects. This attribute of HE operations underpins why the estimation

method can so accurately predict latency.

4.7 Summary

This work introduces the HECATE compiler framework, which innovatively enhances

performance-aware scale management for fully homomorphic encryption (FHE) applications.

The core of HECATE is its robust type system tailored to FHE, complemented by advanced

scale management operations that include a newly developed downscale operation. This

operation is part of a broader strategy encompassing a proactive rescaling algorithm

and a comprehensive scale management space explorer, which together seek to optimize

computational efficiency dynamically.

56

The proactive rescaling algorithm within HECATE intelligently adjusts the scale of

ciphertexts prior to performing operations, significantly reducing unnecessary computational

overhead and enhancing the overall execution speed. Furthermore, the scale management

space explorer systematically evaluates various scale management strategies, enabling the

compiler to select the most efficient pathway through potential scale configurations.

By integrating these elements, HECATE not only advances the state-of-the-art in compiler

design for FHE but also demonstrates a notable performance improvement. Specifically,

HECATE achieves a 27.38% speedup over existing methods, showcasing its effectiveness

in optimizing scale management for enhanced computational efficiency in FHE operations.

This combination of a new type system, innovative scale management operations, and

strategic exploratory algorithms positions HECATE as a pivotal development in the field of

cryptographic computation.

57

Chapter 5

ERROR-LATENCY-AWARE SCALE MANAGEMENT

This chapter introduces ELASM [29], a new error-latency-aware scale management compiler

that introduces three innovative solutions that enhance the ability to balance error and latency

in RNS-CKKS computations. First, it presents the first error estimation model tailored for

RNS-CKKS, designed to accurately predict the discrepancy between results computed on

plaintext and those computed on fully homomorphic encrypted data. Since each RNS-CKKS

operation introduces a specific noise based on the operation type and rescaling level of its

operands, this model projects the resultant error by analyzing the noise introduced at each

step, factoring in the scale of the ciphertext and the cumulative impact along the data flow.

Second, this study introduces a new scheme called Error-Latency-Aware Scale Management

(ELASM), which strategically searches for the optimal scale management plan that minimizes

a cost function defined by error and latency parameters. ELASM starts by generating various

scale management plans, each incorporating different scale management operations. It then

uses the previously mentioned error estimation model to evaluate the potential error and

accumulates the latencies of each RNS-CKKS operation to assess overall performance. With

these evaluations, ELASM calculates the cost function and selects the plan that offers the

lowest cost. Notably, unlike previous methods, ELASM may opt to increase the scale of a

ciphertext if the anticipated reduction in cost justifies such an action.

Third, the work proposes a new parameter called the scale-to-noise ratio (SNR) and

introduces precise, noise-aware waterlines for various RNS-CKKS operations. The SNR

58

parameter allows users to set a threshold ensuring that the scale m of the ciphertext relative

to the noise n introduced by any RNS-CKKS operation remains above a specified value

(m/n ≥ SNR), similar to a traditional signal-to-noise ratio. With this SNR in place, ELASM

can assign specific waterlines for different operations that introduce noise, such as rescale

and rotate, thereby facilitating improved trade-offs between error and latency. The proposed

techniques are implemented as a new optimization pass on the top of HECATE compiler.

5.1 Necessity of Error-Latency-Aware Scale Management

This section evaluates existing scale management schemes and their limitations, underlining

the need for a new error-aware scale management approach. The scale management strategy

employed in EVA focuses on maintaining a minimal scale by tracking scale growth and

implementing the rescale operation when the scale post-rescaling remains above a coarse-

grained waterline, W . The waterline is typically set as the maximum scale of input ciphertexts,

with users having the ability to adjust the input scale to modify the waterline accordingly.

HECATE introduces an enhanced rescaling method named downscale, which allows for

reducing the scale by arbitrary amounts, yet it adheres to the same waterline constraint.

Figures 5.1a and 5.1b demonstrate how EVA (and HECATE) function when computing

rotate(0.1x), a part of convolution, with varying input scales (waterlines) 102 and 103, and a

rescaling factor R = 103. For a waterline of 102 (Figure 5.1a), EVA does not add rescale as

the scale after rescaling is smaller than the waterline: i.e., 104/103 < 100. Conversely, for a

waterline of 103 (Figure 5.1b), EVA incorporates rescale to lower the scale from 106 to 103

between multiplication and rotation.

The limitations of current scale management schemes are outlined as follows:

Limitation 1: Current solutions lack error control during scale management. Increasing the

waterline does not necessarily result in reduced error. For example, using the rotate(0.1x)

59

scale
10!

10"

10#

10$

10%

10&

10'

10(

10)

rotation

x+0.1 1/10

y+0.01 y+0.02

10

100 200

(a) Waterline=100

scale
10!

10"

10#

10$

10%

10&

10'

10(

10)

rotation

x+0.01 1/10

rescaley+0.001

y+0.111y+0.011

10

1000

11 111

(b) Waterline=1000

Figure 5.1: EVA scale management for handling parts of a convolution process that compute
rotate(0.1x), with various waterline settings, reproduced from [29]. In the diagrams, a gray
bar and a subscript illustrate the accumulated noise and the corresponding error in a ciphertext.
A rescale operation within this context reduces both the scale and the encrypted value
by a factor of 1000. Additionally, the noise contributions from the rescale and rotate
operations are quantified as 10 and 100, respectively.

scenario in Figure 5.1a (input scale = 102), where a bar graph denotes noise and a subscript

indicates error, consider an initial noise of 10. With an input scale of 102, the error for the

initial ciphertext x is 0.1 (see the subscript +0.1 next to x). Multiplication y = x · 1/10

raises y’s scale to 104 (= 102 · 102). The resultant noise after multiplication is calculated as

m1x1n2+m2x2n1+n1n2+nrelinearize, where n2 and nrelinearize are 0 since 1/10 is plaintext.

Thus, the noise becomes 100 (= 102 · 10 · 1/10) and the error is 0.01 (= 100/104). The rotate

operation then adds an additional noise of nrotate = 100, bringing the total noise and error to

200 and 0.02 (= 200/104), respectively.

Figure 5.1b (input scale = 103) illustrates that a higher input scale can paradoxically lead

to a higher error. After multiplication, the scale of y soars to 106 (= 103 · 103), the noise

increases to 1000 (= 103 · 10 · 1/10), and the error is 0.001 (= 1000/106). EVA then applies

60

-3
-2
-1
0
1
2
3
4
5

13 15 17 19 21 23
Parameter

Output Error(log10)

Figure 5.2: The input scale parameter of EVA leads to an arbitrary variation in the output
error in LeNet-5, reproduced from [29].

rescale, which reduces the noise by the scale and adds nrescale = 10. Post-rescaling, the

scale is 103, the noise is 11 (= 1000/103 + 10), and the error is 0.011 (= 11/103). rotate

subsequently boosts the noise to 111 after adding nrotate = 100. The final error rises to 0.111

(= 111/103), which is greater than in Figure 5.1a.

Limitation 2: Ignoring noise variations and relying on a fixed, noise-oblivious waterline. As

highlighted in Table 2.3, different RNS-CKKS operations inject varying amounts of noise

into the resulting ciphertext. For example, the rotate operation introduces a consistent noise

of nrotate = 100 in both scenarios depicted in Figure 5.1, thereby increasing the resultant

error. Despite this, EVA does not specifically address these noise increments, even though

increasing the scale could mitigate the noise’s impact on error. Moreover, using a single fixed

waterline can unnecessarily limit the scale of operations that minimally affect the resulting

error, thereby restricting opportunities for better latency-error trade-offs.

Importance of Managing Error. Excessive output error can adversely affect the quality of

service (QoS), even in machine learning applications that are somewhat tolerant to errors.

Figure 5.3 illustrates the impact of varying output errors on the prediction accuracy (QoS)

61

0

20

40

60

80

100

-2 -1 0 1 2

Accuracy (%)

Err(-log10)

98.63% 99.21%

59.94%

21.68%
10.91%

99.23%

Figure 5.3: Inference accuracy of LeNet-5 for different errors reproduced from [29].

of LeNet-5 when tested on the MNIST dataset. Significant accuracy declines occur with

large errors (− log ϵ ≤ −1). Conversely, for smaller errors (− log ϵ ≥ −1), the accuracy

improves gradually as the output error diminishes, presenting opportunities to explore various

error-latency trade-offs.

The absence of error-aware scale management and precise waterline settings means

that existing solutions cannot ensure specific output errors, potentially resulting in RNS-

CKKS programs with unpredictable errors. For instance, Figure 5.2 demonstrates that EVA’s

compilation parameters (i.e., waterline) do not effectively regulate the output error, leading

to random variations in error levels. This variability complicates the process of balancing

latency and error.

5.2 Overview of Error-Latency-Aware Scale Management

This work introduces two major advancements: (1) a new error-latency-aware scale manage-

ment system (ELASM, §5.2.1) that provides refined control over the scale of ciphertexts; (2)

an innovative fine-grained noise-aware waterline management strategy that incorporates a new

62

error-proportional compile parameter named SNR (§5.2.2). Together, these developments

expand the scale management options available, facilitating better error and latency trade-offs.

Additionally, this work integrates these concepts into the ELASM compiler, complete

with a new noise-aware FHE language and type system (§5.2.3). This integration enhances

the compiler’s ability to manage and optimize fully homomorphic encryption operations

effectively.

5.2.1 Error-Latency-Aware Scale Management

The Error-Latency-Aware Scale Management (ELASM) approach is built on the crucial

insight that increasing the scale of a ciphertext can significantly reduce the impact of noise on

the error rate, as the error (ϵ) is inversely proportional to the scale (m), calculated as ϵ = n/m.

Unlike previous approaches that utilize the upscale operation only to align the scales for

addition operations, ELASM also employs upscale as a strategic tool for reducing error.

Consider a new scenario illustrated in Figure 5.4 where the computation involves

rotate(0.1x)2. Assume the initial scale (or waterline) is 104, the rescaling factor R = 103, and

the noise contributions from rescale, rotate, and relinearize (ciphertext multiplication)

operations are 10, 1000, and 1000, respectively. Figure 5.4a shows that traditional methods

result in an error of 0.101.

In contrast, Figure 5.4b demonstrates how actively increasing the scale can improve

the output error to 0.01014. By applying upscale to y2, the scheme effectively minimizes

the noise impact from the rotate operation. Notably, Figure 5.4b implements the same

number of rescale operations (2) as Figure 5.4a, maintaining the same rescaling level. Since

latency is largely influenced by the level (l)—as detailed in Table 2.3—this suggests that both

approaches would exhibit similar performance times. Therefore, Figure 5.4b presents a more

favorable error-latency balance.

63

y2
+0
.1
01

10
!"

10
!!

10
!#

10
$

10
%

10
&

10
'

10
(

10
)

10
*

10
"

10
!

10
#

x +
0.
00
1
0.
1

ro
ta
tio
n

y2
+1
.0
0E
-4

y2
+0
.4
E-
5

10

y +
0.
00
01

10
00
0

4.
00
1×
10

! 10

sc
al
e

re
sc
al
e

y +
0.
00
02

20

re
sc
al
e 10

10

(a
)E

xi
st

in
g

W
or

k
(E

VA
)

12 11 10 9 8 7 6 5 4 3 2 1x +
0.
00
1
0.
1

ro
ta
tio
n

y2
+1
.4
E-
5

y2
+4
E-
5

10

y +
0.
00
01

4.
00
1×
10

!

14

4.
00
1×
10

"
re
sc
al
e y +
0.
00
02

20

y2
+0
.0
10
1

10
14

re
sc
al
e

y2
+4
E-
5

up
sc
al
e

10
00
0 (b

)A
ct

iv
e

U
ps

ca
lin

g

12 11 10 9 8 7 6 5 4 3 2 1

x +
0.
01

0.
1

y2
+2
E-
4

ro
ta
tio
n

y2
+2
E-
4

10

y +
0.
00
1

10
0

re
sc
al
e

up
sc
al
e

30

2.
00
×
10

!2.
00
×
10

" y2
+0
.0
00
3
y2
+0
.0
10
3

10
30

(c
)N

oi
se

-a
w

ar
e

W
at

er
lin

e

Fi
gu

re
5.

4:
C

om
pa

ris
on

be
tw

ee
n

th
e

sc
al

e
m

an
ag

em
en

ta
pp

ro
ac

he
s

of
EV

A
an

d
EL

A
SM

fo
r

a
pr

og
ra

m
th

at
ca

lc
ul

at
es

r
o
t
a
t
e
(0
.1
x
)2

,r
ep

ro
du

ce
d

fr
om

[2
9]

.I
n

th
e

ill
us

tra
tio

ns
,a

gr
ay

ba
r(

e.
g.

,1
0

on
th

e
fir

st
ba

r)
an

d
a

su
bs

cr
ip

t(
e.

g.
,+

0.
00

1
ne

xt
to

th
e

fir
st
x

)i
nd

ic
at

e
th

e
ac

cu
m

ul
at

ed
no

is
e

an
d

er
ro

ri
n

a
ci

ph
er

te
xt

,r
es

pe
ct

iv
el

y.
Th

e
re

sc
al

in
g

fa
ct

or
,R

,i
ss

et
at
10

3
.

Th
e

no
is

e
co

nt
rib

ut
io

ns
fr

om
r
e
s
c
a
l
e
,r
o
t
a
t
e
,a

nd
r
e
l
i
n
e
a
r
i
z
e

(c
ip

he
rte

xt
m

ul
tip

lic
at

io
n)

op
er

at
io

ns
ar

e
10

,1
00

0,
an

d
10

00
,r

es
pe

ct
iv

el
y.

In
sc

en
ar

io
s

(a
)a

nd
(b

),
th

e
w

at
er

lin
e

is
co

ns
is

te
nt

ly
se

ta
tW

=
10

4
.I

n
sc

en
ar

io
(c

),
th

e
w

at
er

lin
e

is
ad

ju
st

ed
to

be
no

is
e-

aw
ar

e,
ca

lc
ul

at
ed

as
m

o
p
=

S
N
R
×
n
o
p

w
ith

th
e

SN
R

(S
ca

le
-to

-N
oi

se
R

at
io

)p
re

se
ta

t1
0.

64

Building on this principle, ELASM systematically explores various scale management

strategies by positioning upscale operations at different points and adjusting scaling factors

accordingly. Specifically, ELASM uses Markov Chain Monte-Carlo (MCMC) [79] sampling

to iteratively refine the plan and optimize a custom latency-error cost function. Users can

tailor a specific cost function for ELASM, factoring in both estimated latency and error. To

streamline the exploration process and reduce overhead, ELASM estimates the error and

latency for each proposed scale management plan rather than executing the generated code

and measuring these metrics directly, which can be time-consuming.

5.2.2 SNR: Fine-grained Noise-aware Waterline

This work introduces a new parameter called the scale-to-noise ratio (SNR) and establishes

fine-grained, noise-aware waterlines for scale management. SNR is analogous to the traditional

signal-to-noise ratio used in signal processing. It allows users to specify a minimum ratio

between the scale m of a ciphertext and the noise n introduced by an RNS-CKKS operation:

SNR ≤ m/n.

With the SNR parameter, the waterline mw is no longer a static value set by the input

scale. Instead, it dynamically adjusts according to the noise levels: mop = SNR× nop ≤ m.

Figures 5.4a and 5.4b demonstrate the drawbacks of using a fixed waterline that is

oblivious to varying noise levels, typically set by the maximum input scales as in traditional

methods like EVA. In such systems, the resulting error tends to be heavily influenced by

operations that introduce significant noise, such as rotate. According to Table 2.3, three

RNS-CKKS operations introduce different amounts of noise, while others might not. A

single, fixed waterline can inappropriately constrain the scales of operations that generate

minimal or no noise, thus having little effect on the overall error.

65

Conversely, Figure 5.4c shows how a noise-aware, flexible waterline can expand the

scale management options, enhancing performance without compromising on error rates. For

instance, with an SNR of 10, the noise from encryption and rescale operations is 10, while

the noise from rotate and relinearize (ciphertext multiplication) is 1000. Consequently,

the waterline for rotate and ciphertext multiplication is set at 10× 1000 = 10000, and for all

other operations at 10× 10 = 100. The waterline for plaintext values, which is not influenced

by noise, is set at the lowest level among these values. Unlike in ciphertext multiplications,

the waterline for rotate also affects its operands because the scales of the operands and the

resulting ciphertexts remain unchanged.

Figure 5.4c illustrates that this adaptable waterline approach does not unnecessarily limit

the scale of ciphertexts such as x, 0.1, and y, which minimally impact the scale. Consequently,

only one rescale operation is necessary in this scenario, as opposed to the two needed in the

other examples (a) and (b). Fewer rescale operations imply the possibility of using a smaller

coefficient modulus Q = RL, which can lead to reduced latency (refer to Table 2.3). When

compared to Figure 5.4b, Figure 5.4c provides a superior latency-error trade-off, achieving

lower latency with a comparably minimal error (0.0101 vs. 0.0103).

5.2.3 ELASM Compiler Design

This work introduces the ELASM compiler, designed to support the ELASM framework

and a fine-grained noise-aware waterline through its dedicated language and type system.

This type system ensures that the scale and rescaling level information is embedded within

each ciphertext type, and that each RNS-CKKS operation adheres to its specified SNR-based

waterlines.

Figure 5.5 outlines the architecture of the ELASM compiler. The scale management

plan sampler (§5.3.1) evaluates various optimization plan candidates, each proposing a

66

Performance
Estimator (Existing)
𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙 𝑇 #
𝑚𝑢𝑙	(𝑝𝑙) 4 1 3
𝑚𝑢𝑙	(𝑐𝑖) 4 20 1
𝑢𝑝𝑠𝑐𝑎𝑙𝑒 4 1 1
𝑟𝑒𝑠𝑐𝑎𝑙𝑒 4 4 1
𝑟𝑒𝑠𝑐𝑎𝑙𝑒 3 2 1
𝑟𝑜𝑡𝑎𝑡𝑒 2 5 1
𝑇𝑜𝑡𝑎𝑙
L𝑎𝑡𝑒𝑛𝑐𝑦 35

Cost Function
𝑐𝑜𝑠𝑡	(35, 1030) =

𝟑𝟓𝟔. 𝟓𝟗

Error Estimator (§5.3.3)

x

y

y2

r2
𝑛!"" : 2 C 10#$ 	 𝑥% 	: 0.01
 n : 10 𝑚 : 10&
2 C 10#$ + ⁄10 10& ≈ 𝟑 C 𝟏𝟎#𝟒

y2r
𝑛!"" : 3 C 10#$ 	 𝑥% : 0.01
 n : 10(𝑚	:10&
3 C 10#$ + ⁄10(10& = 𝟎. 𝟎𝟏𝟎𝟑

Error-Latency-Aware Scale Management (§5.3)

ELASM Compiler

Scale Management
Plan Sampler (§5.3.1)

Level: 0
Scale: 10

x

Level: 0
Scale: 1

Level: 2
Scale: 10

Level: 0
Scale: 1

0.1
y

Level: 0
Scale: 1

y2 y2r

Level: 0
Scale: 1

Scale Management
Code Generator(§5.4)

func program (%x)){
 %c = const [0.1]
 %y = mul %x, %c
 %y2 = mul %y, %y
 %up = upscale %y2
 %r = rescale %up
 %rs = rescale %r
 %y2r= rotate %rs,1
 return %y2r }

Waterline Manager (§5.3.2)
Op: Root
n: 10
SNR: 10
𝒎𝒐𝒑:100

Op: Mul (ci)
n : 1000
SNR: 10
𝒎𝒐𝒑: 𝟏𝟎𝟒

Type: Rotate
n: 1000
SNR: 10
𝒎𝒐𝒑: 𝟏𝟎𝟒

x

0.1 y

y2

y2r

Type: Mul (pl)
n: -
SNR: 10
𝒎𝒐𝒑:100

Plan = {0 : (0,10) , 1: (0,1),
0→2 : (0,1) , 1→2: (0,0),
2→3: (0,1), 3→4 : (2,10)}

Type: Root
n: -
SNR: 10
𝒎𝒐𝒑:100

𝜖!"" : 0 𝑥% : 1
 n : 10 𝑚 : 10(
𝜖!"" ← 10 ∕ 10(= 𝟎. 𝟎𝟏

𝜖!"" : 0.01; 0 𝑥% 	: 1; 0.1
 n : 0 𝑚 : 10&
𝜖!"" ← 0.01 C 0.1 = 𝟏𝟎#𝟑

𝜖!"" : 10#(;	10#(𝑥% ∶ 0.1; 0.1
 n : 10(𝑚 : 10,-
2 " 10#(" 0.1 + 10(∕ 10,- ≈ 𝟐 C 𝟏𝟎#𝟒

Noise-aware Waterline Management (§5.3.2, 5.4)

id :1

id :0
id :2 id :3

id :4

Figure 5.5: Design of the ELASM compiler reproduced from [29]. The example scale
management plan and code are the same as Figure 5.4c. mop means a fine-grained waterline
for each operation.

67

specific combination of level reduction (e.g., using rescale) and scale increase (e.g., using

upscale). Utilizing the SNR parameter, ELASM computes noise-aware waterlines for each

FHE operation as an integral part of the type system (§3.2).

For each proposed scale management plan, the scale management code generator (§5.4.2)

integrates necessary scale management operations (e.g., rescale, modswitch, upscale) to

meet the RNS-CKKS constraints, including noise-aware waterlines. It then produces a valid

RNS-CKKS program. For every program generated, ELASM evaluates its error (§5.3.3) and

latency, calculates a user-defined error-latency cost function, and iteratively inputs this data

back into the scale management plan sampler.

Furthermore, ELASM incorporates techniques from HECATE, such as scale management

group generation, latency estimation, and backend code implementation, enhancing its

efficiency and performance in managing scale and error-latency trade-offs.

5.3 Error-Latency-Aware Scale Management

This section describes Error-Latency-Aware Scale Management (ELASM) which actively

manages the scale of ciphertext with an upscale operation for error control. ELASM consists

of a sampling of the scale management space (§5.3.1), a noise-aware waterline management

and code generation (§5.3.2), and an error estimation that enables fast iteration of the

exploration (§5.3.3).

5.3.1 Sampling of Scale Management Space

ELASM utilizes the Metropolis-Hastings algorithm, a popular Markov-Chain Monte-Carlo

(MCMC) sampling method [79], to iteratively seek improved error-latency trade-offs based

on the specified SNR parameter. The process begins with an initial plan P and generates a

new proposal P ∗ from it. The algorithm then evaluates whether to accept this new plan based

68

on the probability α(P ∗|P) = min(1, cost(P)
cost(P∗)). If the new plan is accepted, it becomes the

basis for the next proposal; otherwise, the next proposal is derived from the original plan P .

The decision influences the error and latency in the optimized program, allowing users to

customize the cost function (e.g., cost(P) = T · E for latency T and error E of plan P).

In ELASM, each sample represents a specific scale management plan that specifies

where to place scale management operations and the degree of scale increase or level

decrease. For example, in the rotate(0.1x)2 program depicted in Figure 5.5, possible

locations for scale management operations include transitions between values (x, y), (0.1,

y), (y, y2), and (y2, rotate(y2)). The initial transition (null, x) is also considered for scale

management to simulate adjustments in the scale of an encryption operation. Therefore, a

scale management plan in ELASM can be represented as a mapping from an edge (as a key)

to a pair indicating the level and scale change (as a value). For instance, the plan shown

in Figure 5.5 {(null, x) : (0, 10); (null, 0.1) : (0, 1); (x, y) : (0, 1); (0.1, y) : (0, 1); (y, y2) :

(0, 1); (y2, rotate(y2)) : (2, 10)} indicates a plan that reduces the level by 2 and increases the

scale by 10 between y2 and rotate(y2) (i.e., before rotate). To propose new plans, ELASM

randomly selects target positions and adjusts the level and scale accordingly.

5.3.2 Noise-aware Waterline Management

Merely inserting scale management operations based on a plan does not ensure the creation

of a valid program that adheres to all RNS-CKKS constraints highlighted in Table 3.1. The

ELASM compiler employs a type system, which is detailed in §5.4.1, to enforce these RNS-

CKKS constraints, including the innovative SNR-based noise-aware waterlines. Additionally,

this work establishes a set of rewriting rules (§5.4.2) that facilitate the generation of a program

compliant with RNS-CKKS constraints.

69

Table 5.1: Value and error estimation for each FHE operation reproduced from [29]. The
suffix ’c’ in operation names indicates a ciphertext, while ’p’ signifies a plaintext; for example,
mulcp represents a multiplication between a ciphertext and a plaintext. Operations not listed
here maintain their error and value constants. Each operation processes an encoded integer
v = mx+ n = m(x+ ϵ), where m is the scale, x is the value, n is the noise, and ϵ is the
error. An asterisk (*) denotes an estimation.

Operation Est. Value Estimated Error
mulcc(v1,v2) x∗1x

∗
2 ϵ∗1x

∗
2 + ϵ∗2x

∗
1 + ϵ∗1ϵ

∗
2 + nrelinearize/m

mulcp(v1,v2) x∗1x2 ϵ∗1x2
addcc(v1,v2) 1 ϵ∗1 + ϵ∗2
addcp(v1,v2) 1 ϵ∗1
rotate (v) x∗ ϵ∗ + nrotate/m
rescale (v) x∗ ϵ∗ + nrescale/(m/R)
downscale (v) x∗ ϵ∗ + nrescale/mw

upscale (v) x∗ ϵ∗

For instance, in Figure 5.5 where the SNR is set to 10, ELASM calculates specific

waterlines for each ciphertext depending on the type of operation involved. For operations like

y2 and rotate(y2), the waterlines are calculated as 10× 103 = 104. For other operations, the

waterlines are set at 10× 10 = 100. Subsequently, ELASM incorporates scale management

operations such as upscale and rescale into the program. The integration of these operations

ensures that the program conforms to all RNS-CKKS constraints, validated by the robustness

of the ELASM’s type system as discussed in §3.4.

5.3.3 Error Estimation

ELASM estimates the error and latency of candidate programs statically, rather than

dynamically executing and measuring these metrics, which can be prohibitively expensive.

For latency, ELASM simply sums up the expected time for each RNS-CKKS operation, as

identified in Table 2.3, where the time complexity depends on the polynomial modulus N

and the level l, values that can be determined once a program is specified.

70

Estimating the exact amount of error, however, poses more of a challenge, especially

since calculating the error from ciphertext multiplication involves unencrypted values, which

are not accessible. As depicted in Table 3.1, when two ciphertexts v1 = m1(x1 + ϵ1) and

v2 = m2(x2 + ϵ2) are multiplied, the resulting error includes terms dependent on the values

x1 and x2, such as ϵ1x2 + ϵ2x1 + ϵ1ϵ2 + nrelinearize/m.

To tackle this issue, ELASM adopts a straightforward value estimation approach that,

while not capable of determining the absolute error, is adequate for comparing different

candidate programs. Table 5.1 lists ELASM’s formulas for estimating value and error for

each FHE operation. These estimations are then propagated through the data flow of the

operations. Notably, for most operations, estimating error does not necessitate an estimated

value. However, for operations like mulcc, the error estimation does rely on an estimated

value.

Given the difficulties in precisely estimating values, this work assumes that maintaining a

consistent estimated value at the same program points across different candidate programs

suffices for evaluating error differences. Consequently, ELASM sets the estimated value

of an addition to 1—the multiplicative identity—which simplifies error estimation for

operations like mulcc and mulcp. This approach aims to accurately reflect the effects of

multiplications, while accepting less precision for additions. By resetting values to 1, ELASM

effectively conducts a piece-wise analysis of FHE programs, focusing on enabling comparative

assessments rather than precise value estimations.

We will later demonstrate that this simplified error estimation closely aligns with the

actual resultant errors, as discussed in §5.5.2.

71

Γ ⊢ h1 : cipher(m, d) Γ ⊢ h2 : cipher(m
′, d) mm′ ≥ mrelinearize

Γ ⊢ h1 × h2 : cipher(mm′, d)
(MulCC)

Γ ⊢ h : cipher(m, d) m ≥ mrotation

Γ ⊢ rotate(h, l) : cipher(m, d)
(Rot)

Γ ⊢ h : cipher(m, d) mrescale ≤ m ≤ mrescale ·R
Γ ⊢ downscale(h) : cipher(mrescale, d+ 1)

(DS)

Γ ⊢ h : cipher(m, d) m
R ≥ mrescale

Γ ⊢ rescale(h) : cipher(mR , d+ 1)
(RS)

Figure 5.6: Typing rules that uses fine-grained waterline reproduced from [29]. The minimal
scale for a rescale operation is mrescale and the minimal scale for a rotate is mrotation.

5.4 Code Generation

This section outlines the code generation process in ELASM, focusing on the scale type system

that upholds the RNS-CKKS constraints, including the advanced noise-aware waterline

(§5.4.1). It also discusses the ELASM code generation approach, which utilizes rewriting

rules to ensure compliance with these constraints (§5.4.2).

For a detailed exploration of the formal operational semantics and the robustness of the

type system, refer to Sections 3.3 and 3.4.

5.4.1 Type System of ELASM

Figure 5.6 displays a part of the typing rules that incorporate the waterline constraints. The

comprehensive set of typing rules is available in §3.2. This type system is crafted to uphold

the RNS-CKKS constraints detailed in Table 3.1, including the SNR-based noise-aware

waterlines outlined in §5.2.2. The type soundness of HECATE language ensures that a

well-typed program adheres to these RNS-CKKS constraints. A brief proof of this is provided

in §3.4.

72

The ELASM type system specifically enforces the SNR constraint. Notably, four rules,

such as Equations MulCC , Rot, DS, and RS, mandate minimum scales (waterlines):mrelinearize

for ciphertext multiplication, mrotation for rotation operations, and mrescale for both rescale

and downscale operations. The waterline mrelinearize is typically satisfied naturally since

ciphertext multiplication inherently increases the scale.

However, to meet the SNR-based noise-aware waterline requirement, the waterlines

mrotation and mrescale must be defined as nrotate×SNR and nrescale×SNR respectively, for

a given SNR. From Table 2.3, nrotate is calculated as 8
√
3

3 σlN + 8
√
2

3 N +
√
3N and nrescale

is 8
√
2

3 N +
√
3N . Since nrotate is influenced by the ciphertext level, which is unknown prior

to rescaling, ELASM uses the highest plausible value to ensure compliance.

5.4.2 ELASM Rewriting Rules

Given a program that might not be legally executable without necessary scale management

operations, ELASM generates a well-typed program that complies with all RNS-CKKS

constraints for a specified SNR parameter. To achieve this, ELASM utilizes a series of code

rewriting rules that introduce scale management operations such as downscale, upscale, and

rescale.

These rewriting rules (see Figure 5.7) modify expressions to satisfy the conditions

required by the typing rules in Figure 5.6. For example, Equation DScale inserts downscale

for both operands when it proves more efficient than performing multiplication followed by

rescale. Equation DMatch and Equation LMatch add downscale and modswitch, respectively,

to align the levels of operands in binary operations, thereby meeting the requirements of

typing rules for addition and multiplication (Equations Add to MulCC). Equation SMatch uses

upscale to equalize the scales of operands in binary operations, fulfilling the typing rule

Equation Add.

73

Γ ⊢ h : scale(m, d) Γ ⊢ h′ : scale(m′, d) m ·m′ < mrescale
2 ·R

h× h′
rewrite−−−−→ downscale(h)× downscale(h′)

(DScale)

Γ ⊢ h : scale(m, d) m ≥ Rmrescale

h
rewrite−−−−→ rescale(h)

(Rescale)

Γ ⊢ e : scale(m, d) Γ ⊢ e′ : scale(m′, d′) m > mrescale d < d′

e⊕ e′
rewrite−−−−→ downscale(e)⊕ e′

(DMatch)

Γ ⊢ h : cipher(m, d) Γ ⊢ h′ : real

h+ h′
rewrite−−−−→ h+ upscale(h′,m)

(EncodeAdd)

Γ ⊢ e : scale(m, d) Γ ⊢ e′ : scale(m′, d′) m = mrescale d < d′

e⊕ e′
rewrite−−−−→ modswitch(e)⊕ e′

(LMatch)

Γ ⊢ h : cipher(m, d) Γ ⊢ h′ : real

h× h′
rewrite−−−−→ h× upscale(h′,mrescale)

(EncodeMul)

Γ ⊢ h : scale(m, d) Γ ⊢ h′ : scale(m′, d) m < m′

h+ h′
rewrite−−−−→ upscale(h,m′/m) + h′

(SMatch)

Γ ⊢ e : cipher(m, d) m < mrotation

rotate(e, i)
rewrite−−−−→ rotate(upscale(e,mrotation/m), i)

(URot)

Figure 5.7: Rewriting rules for ELASM reproduced from [29]. mrescale means the minimal
scale required by a rescale operation, and mrotation means the minimal scale required by a
rotate operation. scale includes cipher and plain type.

Additionally, Equation EncodeAdd employs upscale to convert a real type operand to a

plain type, setting its scale to match that of the other operand as required by Equation Add,

which does not permit real type operands. Meanwhile, Equation EncodeMul elasmlies

upscale for casting in multiplication scenarios, aligning the encoding scale with the waterline

of rescale, mrescale, as all input data for the program are set to this scale.

A new rule, Equation URot, specifically for rotation operations, elasmlies upscale if the

operand’s scale falls below the noise-aware waterline for rotation (mrotation), calculated as

nrotate × SNR. This ensures compliance with the typing rule Equation RS in Figure 5.6.

74

Once the scale management code generation is complete, and the optimal program code

is chosen, it is translated into LLVM IR, which then invokes functions from the FHE library.

Microsoft SEAL [23], which implements the RNS-CKKS scheme, is used as the backend for

this process.

5.5 Evaluation of Error-Latency-Aware Scale Management

This study compares ELASM with leading FHE compilers such as EVA [26] and Hecate [28]

to assess the performance improvements brought by the proposed error-latency aware scale

management and noise-aware waterlines. For the evaluation, seven machine learning and

deep learning applications are implemented and tested. These benchmarks include the same

set used in Hecate, with the addition of multivariate regression (MR) for epoch 2 and 3, and

all except SqueezeNet from EVA’s benchmarks. The evaluations run on the same setting with

HECATE as described in §4.6.1

ELASM processes 12000 scale management plan samples across 12 parallel threads,

estimating the level decrement as ldec ∼ U[0,2] and the scale increment as minc = ReLU(X)

for X ∼ U[−10,10], where U[a,b] represents a uniform distribution over the interval [a,b]. The

number of newly sampled positions for a new plan is calculated as
√

of candidate positions.

The cost function used in ELASM is
√
T · (60 + logE), balancing the influence of

the compilation parameters on latency T (quadratic) and the resultant error E (inversely

exponential). Here, the square root is applied to T and a logarithmic transformation to E,

after which they are multiplied. An addition of 60 to logE ensures the value remains positive.

5.5.1 Pareto Curve of Error-Latency Trade-off

Figure 5.8 displays Pareto-optimal error and latency trade-off options for all benchmarks.

This study adjusts the compilation parameter (the waterline in EVA and Hecate, and the

75

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

1.
1

-1
1

-6
-1

4

EV
A

He
ca
te

EL
AS

M
La
te
nc
y(
s)

Er
r(
lo
g 1

0)

(a
)S

F

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

1.
6

1.
8

-9
-7

-5
-3

-1
1

EV
A

He
ca
te

EL
AS

M
La
te
nc
y(
s)

Er
r(
lo
g 1

0)

(b
)H

C
D

0.
6

0.
7

0.
8

0.
91

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

-1
1

-1
0

-9
-8

-7
-6

-5

EV
A

He
ca
te

EL
AS

M
La
te
nc
y(
s)

Er
r(
lo
g 1

0)

(c
)L

R
E2

1

1.
52

2.
53

3.
54

-1
4

-1
2

-1
0

-8
-6

-4

EV
A

He
ca
te

EL
AS

M
La
te
nc
y(
s)

Er
r(
lo
g 1

0)

(d
)P

R
E2

2

2.
53

3.
54

4.
55

5.
5

-9
.5

-7
.5

-5
.5

-3
.5

-1
.5

EV
A

He
ca
te

EL
AS

M
La
te
nc
y(
s)

Er
r(
lo
g 1

0)

(e
)M

R
E2

0.
7

1.
2

1.
7

2.
2

2.
7

-1
0

-8
-6

-4
-2

0

EV
A

He
ca
te

EL
AS

M
La
te
nc
y(
s)

Er
r(
lo
g 1

0)

(f
)L

R
E3

2

2.
53

3.
54

4.
55

5.
56

6.
57

-9
-7

-5
-3

EV
A

He
ca
te

EL
AS

M
La
te
nc
y(
s)

Er
r(
lo
g 1

0)

(g
)P

R
E3

468101214161820

-1
2

-1
0

-8
-6

-4

EV
A

He
ca
te

EL
AS

M
La
te
nc
y(
s)

Er
r(
lo
g 1

0)

(h
)M

R
E3

2345678

-9
.5

-7
.5

-5
.5

-3
.5

-1
.5

EV
A

He
ca
te

EL
AS

M
La
te
nc
y(
s)

Er
r(
lo
g 1

0)

(i)
M

LP

2030405060708090

-6
-5

-4
-3

-2

EV
A

He
ca
te

EL
AS

M
La
te
nc
y(
s)

Er
r(
lo
g 1

0)

(j)
Le

ne
t

Fi
gu

re
5.

8:
Pa

re
to

-f
ro

nt
ie

rp
lo

ts
of

er
ro

r-l
at

en
cy

tra
de

-o
ffs

re
pr

od
uc

ed
fr

om
[2

9]
.E

2
an

d
E3

st
an

ds
fo

r2
an

d
3

ep
oc

h
of

th
e

gr
ad

ie
nt

de
sc

en
ta

lg
or

ith
m

of
re

gr
es

si
on

be
nc

hm
ar

ks
.

76

Err(log10)

-18

-15

-12

-9

-6

-3

0

3

SF HCD LR2 PR2 MR2 LR3 PR3 MR3 MLP Lenet Avg

EVA Hecate ELASM

(a) Best error for a given latency (Lower is better)

Latency(Normalized by Hecate)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

SF HCD LR2 PR2 MR2 LR3 PR3 MR3 MLP Lenet Avg

EVA Hecate ELASM

(b) Best latency for a given error (Lower is better)

Figure 5.9: Error and latency of the benchmarks for a given constraint, plotted on Figure 5.8,
reproduced from [29].

77

waterline of rescale derived from SNR in ELASM) from 215 to 250. Benchmarks such as

SF, MR E2 (epoch 2), MR E3 (epoch 3), and MLP demonstrate that their Pareto curves shift

left, indicating reduced error for a given latency. For LR E2, LR E3, PR E2, and PR E3, the

curves shift left and downward, showing simultaneous improvements in both latency and

error. For other benchmarks like HCD and Lenet, the curve shapes differ too much for direct

comparison, yet generally, they show enhanced performance and reduced error.

To quantify the Pareto curve improvement for the error-latency trade-off, the best error

and latency for a specified constraint are marked with red lines in Figure 5.8. These constraint

points represent the average error and latency values among the results explored.

Figure 5.9 compares error and latency among EVA, Hecate, and ELASM. ELASM

focuses on enhancing both error and latency, evidenced by observed improvements in these

metrics. Table 4.1 indicates that for the same latency across each application, on average,

ELASM exhibits smaller errors than EVA and Hecate by 312.8× and 31.2×, respectively.

Differing from previous methods, ELASM actively adjusts the scale of ciphertext to better

manage error. Moreover, Figure 5.9b reveals that at comparable error levels, ELASM achieves

faster performance than EVA and Hecate by 26.7% and 21.3%, respectively. Thanks to its

broader scale management search space facilitated by the innovative noise-aware waterlines,

ELASM effectively discovers more efficient scale management plans with reduced latency

compared to Hecate.

5.5.2 Error Estimation

This study assesses the accuracy of the error estimation method used in ELASM. As outlined

in §5.3.3, ELASM is not designed to calculate the exact magnitude of errors for a specific

program. Rather, its error estimation method aims to provide proportional estimations that

are useful for computing and comparing the cost functions of different scale management

78

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

SF HCD LR E2 PR E2 MR E2 LR E3 PR E3 MR E3 MLP Lenet Total

R2

Figure 5.10: Coefficient of determination (R2) from linear fitting of estimated error and
measured error reproduced from [29].

plans. The crucial measure of accuracy for this error estimation is how closely the estimated

errors correlate proportionally with the actual measured errors.

Figure 5.10 displays the R2 value of the linear relationship between the estimated

errors and the actual measured errors. ELASM’s method of estimating errors achieves an

average R2 value of 0.948, suggesting that the error estimation is sufficiently proportional

for evaluating different scale management plans. The lowest R2 value, observed with Lenet

at 0.884, indicates that the simple assumptions used for value estimations lack precision.

This inaccuracy becomes more pronounced through multiple computational steps involving

multiplications, rotations, and additions, which can amplify the discrepancies between

assumed and actual values.

5.5.3 Error-proportionality of SNR parameter

This section assesses how closely the compiler parameters used in EVA, Hecate, and ELASM

relate to the resulting error. A compiler parameter that proportionally influences the error

79

𝑅2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SF HCD LR E2 PR E2 MR E2 LR E3 PR E3 MR E3 MLP Lenet Total

EVA Hecate ELASM

Figure 5.11: Coefficient of determination (R2) from linear fitting of parameter and error
reproduced from [29]

enables users to effectively explore various error-latency trade-offs. By adjusting a single

parameter while observing corresponding changes along the Pareto curve, users can predict

how alterations to the parameter will impact the error-latency balance. This approach

eliminates the need to test every possible parameter setting.

Figure 5.11 displays theR2 values from linear regressions between the compiler parameters

and the output errors for each application. This indicates how the error correlates with the

compiler parameter. Since EVA, Hecate, and ELASM utilize parameters that function

differently, we align these parameters on the same x-axis based on their maximum allowable

operation-wise error.

Overall, ELASM demonstrates superior error proportionality compared to EVA, which

seems ineffective at controlling errors. EVA exhibits very low proportionality, especially in

PR E3, due to its suboptimal scale management and the deep multiplications required in PR

E3, which necessitate large coefficient moduli at some parameter settings, rendering them

impractical.

80

Interestingly, for PR E3, EVA registers a slightly higher R2 value than ELASM. It’s

important to note that ELASM is designed to optimize a cost function that includes both

latency and error. Consequently, ELASM may select a scale management strategy where the

error is higher if it results in a lower overall error-latency cost, causing some deviations in

the results.

Nevertheless, Figure 5.11 illustrates that ELASM consistently achieves high R2 values

across all tested applications, with the lowest R2 value being 0.948 and an average R2 of

0.986.

5.5.4 Case Study: End-to-end DNN Application

We developed a prototype for end-to-end image classification using LeNet-5. In this scenario,

a client encrypts an image from the MNIST evaluation dataset and sends it to a server. The

server processes the encrypted image using LeNet-5 and returns it to the client, who then

decrypts it to verify its correctness. Both the client and server are connected via a 1Gbps

network and have identical configurations for the evaluation setup.

Figure 5.12a displays the end-to-end latency results. EVA does not prioritize latency

during its scale management, resulting in no consistent correlation between its parameters

and latency. In contrast, Hecate and ELASM incorporate latency considerations into their

scale management, demonstrating a monotonic relationship between their parameters and

latency.

Figure 5.12b illustrates the inference accuracy for EVA, Hecate, and ELASM. This figure

indicates a significant accuracy improvement at a certain threshold, as detailed in Figure 5.3.

Notably, Hecate, which focuses on minimizing latency often at the expense of accuracy, shows

unpredictable accuracy drops at a waterline of 215. In comparison, ELASM incorporates

81

0

10

20

30

40

50

60

70

EVA Hecate ELASM

Latency(s)

12 13 14 15 1612 13 14 15 1612 13 14 15 16

(a) Latency for a given parameter (Lower is better)

0

20

40

60

80

100

EVA Hecate ELASM

Accuracy(%)

12 13 14 15 1612 13 14 15 1612 13 14 15 16

(b) Accuracy for a given parameter (Higher is better)

Figure 5.12: A case study of using LeNet-5 for end-to-end inference reproduced from [29].
This includes measuring the latency, which accounts for both network time and the time
taken for encryption and decryption processes. Accuracy measurements are conducted using
a subset of the MNIST evaluation dataset..

82

error estimates into its scale management and maintains a consistent relationship between

parameters and accuracy.

Overall, both EVA and Hecate fall short in facilitating an efficient exploration between

accuracy and latency. ELASM, however, demonstrates a consistent improvement in both met-

rics, underscoring the effectiveness of its error-proportional parameter strategy. Additionally,

for comparable error levels, ELASM achieves the lowest end-to-end latency, allowing users

to efficiently navigate the most advantageous accuracy-latency trade-offs.

5.6 Summary

This work introduces a novel approach to scale management in RNS-CKKS fully homomorphic

encryption, termed Error- and Latency-Aware Scale Management (ELASM). ELASM is

designed to meticulously explore a variety of scale management plans, efficiently evaluating

the output error and latency associated with each. Through a methodical iterative process,

ELASM identifies the most effective plan that minimizes both error and latency, marking a

significant advancement in scale management techniques.

Central to ELASM is the innovative scale-to-noise ratio (SNR), a new error-proportional

parameter that enhances the precision of scale adjustments based on noise levels. This feature,

alongside the introduction of fine-grained noise-aware waterlines, significantly expands the

scope of scale management exploration, allowing for more nuanced adjustments tailored to

specific encryption needs.

The ELASM framework has been fully integrated into the ELASM compiler, which also

features a noise-aware ELASM type system specially developed to support this advanced

scale management approach. To demonstrate the effectiveness of ELASM, this work conducts

extensive evaluations using ten diverse machine learning and deep learning benchmarks.

ELASM provides 21.3% and 31.2× better latency and error for a given error and latency,

83

respectively. The results highlight ELASM’s superior ability to optimize latency and error

trade-offs compared to current leading RNS-CKKS compilers such as EVA and HECATE.

These enhancements make ELASM a cutting-edge tool in the domain of homomorphic

encryption, setting new standards for performance and accuracy in secure computation.

84

Chapter 6

PERFORMANCE-AWARE STATIC SCALE ANALYSIS

This research introduces a novel approach [30] termed reserve analysis for performance-aware

backward static scale analysis in RNS-CKKS programs. The concept of reserve r is defined

as the quotient of the coefficient modulus Rl by the current scale m, indicating the remaining

scale capacity available in a ciphertext. A crucial feature of the reserve is its consistency

across rescale operations, which simplifies the analysis process.

The semantics of reserve are formalized, and a reserve type system is established to

effectively manage reserves and assess the latency implications for RNS-CKKS operations.

Reserve analysis utilizes a backward approach, starting from the results and working towards

the inputs to deduce the reserve requirements for each operand in an operation.

This approach prioritizes operations that are computationally intensive by strategically

allocating reserves to potentially lower their operational levels aggressively. Following

this allocation, a rescale placement algorithm evaluates the cost-effectiveness of various

rescale positions within the program, aiming to identify the most efficient placement strategy.

This method ensures an optimized balance between computational efficiency and resource

utilization in encrypted computations. The proposed techniques are implemented as a new

optimization pass on the top of HECATE compiler.

85

Table 6.1: Latency of RNS-CKKS operations for level 1 to 8 (µs) adapted from [30]. The
other parameters are N = 215 and R = 260.

Op Level

1 2 3 4 5 6 7 8

modswitch (plain) 29 43 57 71 86 100 114 128
modswitch (cipher) 48 86 156 208 286 315 391 457
cipher + plain 50 98 153 209 269 335 409 472
cipher + cipher 85 204 250 339 421 531 615 723
cipher × plain 211 421 642 853 1120 1260 1509 1726
rescale (cipher) 1926 3119 4525 5706 6901 8198 9570 10781
rotate (cipher) 3828 7966 13584 20933 28832 40137 51080 64134
cipher × cipher 4363 9172 15658 23517 33974 43235 56611 68785

6.1 Necessity of Performance-aware Static Scale Analysis

This section explores the current scale management techniques used in leading RNS-CKKS

compilers like EVA [26] and HECATE, highlighting three main limitations and setting the

stage for new, innovative solutions.

6.1.1 Forward Static Scale Analysis

EVA [26] utilizes a forward static scale analysis that progresses from the start to the end of

a program, adding a rescale operation whenever the resultant scale exceeds a predefined

global waterline. This waterline, set by the programmer, represents the scale of an input

ciphertext and aims to minimize the accumulated scale of the program’s result, which in turn

influences the level of the input ciphertexts.

For instance, consider a sample program x3 · (y2 + y) with an input scale or waterline

W = 20 (effectively 220) and a rescaling factor R = 60. EVA conducts a scale analysis and

implements scale management operations as detailed in Figure 6.1b. Starting with input

variables x and y at scale m = 20, each multiplication escalates the resultant scale. EVA adds

rescale when the resultant scale surpasses the waterline. For example, the scale of x2 does

86

not warrant a rescale, so no operation is inserted between x2 and x3, maintaining the same

level and latency for both.

An upscale operation boosts y’s scale from 20 to 40 to equalize the scales of the two

operands in the addition s = y2 + y. A rescale is applied after the final multiplication,

reducing q’s scale from 100 to 40, yet it remains above the waterline W = 20. By rescaling q,

EVA minimizes the ciphertext size, which reduces storage and network costs. This forward

analysis determines that the level of input ciphertexts must be at least l ≥ 2 to prevent

scale overflow and accommodate one rescale, setting the minimal safe coefficient modulus

Q = R2 = 120.

Nonetheless, EVA’s method doesn’t optimally manage levels for each intermediate

ciphertext, leading to potential performance inefficiencies. In RNS-CKKS, the level l affects

a ciphertext’s size (Figure 2.1a) and thus the operation latency. Lower levels correspond

to reduced latencies. Table 6.1 outlines our latency measurements for various RNS-CKKS

operations at different levels. Managing levels of operations, especially heavy ones like

cipher × cipher and rotate, which are prevalent in ML applications, is crucial.

The improved scale management approach shown in Figure 6.1c, developed in this work,

applies rescale operations to x and y early, enabling many operations at lower levels (level

1 vs. 2 in Figure 6.1b), which decreases overall latency. Early rescale operations increase

the accumulated scales but do not impact latency, as they fully utilize the remaining scale

(reserve) of the result without increasing the level. Figure 6.1b shows an under-utilized scale

of 20 in the final ciphertext q′, whereas Figure 6.1c fully utilizes all 60 in q while maintaining

the maximum level at 2.

EVA’s forward static analysis struggles with level-aware, performance-focused scale

management because it does not consider subsequent operations when inserting scale

management operations, hindering optimization. What is needed is a mechanism for analyzing

87

a program backward with a defined scale budget. This paper introduces a novel reserve

concept representing the required scale budget from subsequent operations and a reserve

analysis that examines reserves in a backward direction.

6.1.2 Tightly Coupled Scale Management and Analysis

Unlike the fixed arithmetic operations specified in a program, the quantity of scale manage-

ment operations can vary significantly across different management strategies. As demon-

strated in Table 6.1, among the three scale management operations—rescale, upscale, and

modswitch—rescale exhibits the highest latency. The latency for upscale is comparable

to that of cipher × plain or cipher + plain, depending on how it is implemented. This

observation suggests that minimizing the number of rescale operations is crucial for opti-

mizing RNS-CKKS programs. However, existing compilers often do not distinguish between

the placement of rescale operations and scale allocation, thereby overlooking potential

optimizations.

In contrast to the scenario depicted in Figure 6.1c, which utilizes four rescale operations,

Figure 6.1d implements three and achieves reduced latency. The key difference lies in the

handling of the addition s = y2 + y: the former approach applies rescale to both operands

before addition, while the latter performs a single rescale on the result after the addition. To

facilitate this kind of optimization, it is essential to independently determine the placement

of rescale operations apart from scale allocation. For example, for the addition result s,

Figure 6.1c uses a scale m = 20 and level l = 1, whereas Figure 6.1d uses a scale m = 80 and

level l = 2.

This scenario underscores the need for a new construct that remains invariant to rescale

operations, effectively separating scale analysis from the placement of scale management

operations. The newly proposed reserve concept maintains this invariance across rescale

88

: arithmetic

: rescale

: upscale

RS

US

Legend Cost Table

Lv. 1 Mul Lv. 2 Mul

Lv. 1 Add Lv. 2 Add

Lv. 1 Rescale Lv. 2 Upscale

44 92

1 2

19 2

: scale mgmt.

x2 := x× x;
x3 := x× x2;
y2 := y× y;
s := y2 + y;
q := x3 × s;
ret q

(a) Example program.

ı

x x2 x3 y’ s q q’y y2

80

40

RS

92Latency 92 92 1992

100

20

100

20

60

60

80

40

80

40

80

40

80

40

20

40

US Total cost : 390

2 1

(b) Existing scale management (EVA) for Figure 6.1a.

ıı`

qs

Latency

x x2 x3 y’ y’’ y2’y x2’ y2x’ x’’

92 44 92

37

19 19 19 19 44

60

RS
RS

RS RS
US

US

20
40

40
20

40
20

40
20

40

80

40

80

80

40

40

80

40

80

40
20

40
2080

40
Latency

Improvement

Total cost : 353

2 2 1

(c) Improved scale management reducing the level of heavy operations (step 1).

ıı`

qs’

Latency

x x2 x3 y’y x2’ y2x’ x’’

92 44 92

55

19 19 19 44

60

RSRS RS
US

US

20
40

40
20

4040

80

80

40

40

80

40

80

40
20

40
2080

40
Latency

Improvement

Total cost : 335

s

80

40

80

2 22

(d) Improved scale management reducing the number of rescale operation (step 2).

Figure 6.1: Execution time and scale management plan for the example program (Figure 6.1a)
that computes x3 · (y2 + y) in EVA (Figure 6.1b) and this work (Figures 6.1c and 6.1d) for
the given rescaling factor 60 and waterline 20, reproduced from [30]. The cost is the latency
at Table 6.1 with the unit of 100µs The numeric numbers for rescaling factor, waterline, scale,
and reserve are given in the log base 2.

89

operations, leading to the introduction of a novel rescale placement method that is decoupled

from reserve analysis.

6.1.3 Exploration-based Scale Management

HECATE (and ELASM) introduces a method of iterative exploration for scale management.

In each exploration cycle, it generates several scale management strategies. Each strategy

introduces a scale management operation at a randomly selected point within the program.

These strategies are then used to create candidate programs that comply with the RNS-CKKS

framework by incorporating necessary scale management operations.

HECATE evaluates each candidate program to identify the one with the lowest estimated

latency and continues to refine its scale management approach through a method known as

hill-climbing. This process is repeated across many iterations. As a result, HECATE can

often achieve shorter overall runtime latencies compared to EVA.

However, this iterative exploration process significantly lengthens the time it takes to

compile programs. For example, compiling the deep-learning application LeNet-5 with

HECATE takes about 483 seconds. The compilation time can become even longer for larger

neural networks. This extended scale management time is critical because quicker scale

management methods can lead to new optimization opportunities, such as the insertion of

bootstrapping and the selection of data layouts, which frequently require re-running scale

management.

This work seeks to deliver comparable improvements in performance without the need

for extensive exploration of scale management possibilities.

90

§6.4 Reserve Analysis

§6.4.2,6.4.3 Reserve Allocation & Redistribution (Backward Analysis)

§6.4.1 Allocation Ordering

(e) Redistribution

§6.5 Rescale Placement (Forward Analysis)

x x2 x3 q
Dependence Graph

y y2 s

reserve-in

reserve-out
ctxt reserve

level-mismatch

(c) Before Redistribution

75

75
75
97

75

977530

3030

(a) Cost Estimation
x y x2 x3 y2 s q

Depth 4 3 3 2 2 2 1
Level 2.3 2 2 1.6 1.6 1.3 1.3
Cost 0 0 92 76 76 1 60
Cost: x2 > x3 > y2 > q > s > x > y

(b) Reserve Ordering Analysis

Reserve Allocation Order:
q → x3 → x2 → s → y2 → x → y

s y2

x
y

y2 :
x :
y :

q x3 x2x2 :
q

s y2q
q x3 x2

Dependence Chain

Co
st

(d) After Redistribution

q x3 x2 x

s y2 y
30

30

30
30

80

40
40

80
8020

4040

q x3 x2 x

s y2 y
40

20

40
40

80

40

0 30→40

30→20

40

20

10q
x3

s

(h) Hoisting

s
y2

y
q

s
y2

y
q

Benefit : 38-20 = 18

RS

RS

RS

Cost : 19 × 2

Cost : 19 × 1
Level 1 → 2 : 1

(f) Before Hoisting
x x2 x3 q

y y2 s
US RS

RS

RS
US RS

(g) After Hoisting
x x2 x3 q

y y2 s
US

RS
RS

US RS

Cost :335

Cost :353

Figure 6.2: Overview of the rescale placement and reserve analysis, using the same example
of Figure 6.1a, adapted from [30].

91

6.2 Overview of Performance-aware Static Scale Analysis

This work introduces a new concept in scale management called reserve, defined as the

available scale budget for future RNS-CKKS operations. Illustrated in Figure 2.1, the reserve

r is seen as the unused capacity in the coefficients of a polynomial, where the product of the

reserve and the scale m equals the coefficient modulus Q = r ·m. During addition, given

that the scales are equal (m1 = m2 = m3), the reserves for both operands and the result

remain constant (r1 = r2 = r3). In multiplication, where the resultant scale is the product

of the operand scales (m3 = m1 ·m2), and considering m = Q/r, the relationship among

the reserves becomes Q · r3 = r1 · r2. For rescale operations, though the scale changes by

1/R, the reserve remains consistent, thus allowing reserve analysis to be independent from

rescale placement.

To manage these reserves effectively and analyze operation latency efficiently, this work

introduces the reserve type system (§6.3). This system supports the newly proposed reserve

analysis (§6.4), a performance-aware static scale analysis for RNS-CKKS programs. The

reserve type system tracks each ciphertext’s reserve and the minimum required level to satisfy

RNS-CKKS constraints, including waterline constraints.

Figure 6.2 demonstrates the reserve analysis process, which includes allocation ordering,

reserve allocation, and reserve redistribution, illustrated using the same example program as

in Figure 6.1a. The reserve analysis is performed at the function level, analyzing all operations

within a function. During allocation ordering (§6.4.1), the analysis assesses each operation’s

cost, examines its dependency chain to return values, and prioritizes heavier (higher latency)

operations. The reserve allocation (§6.4.2) assigns reserves based on the reserve type system

from the end of the program to the start, using the minimal output reserve as a starting

point. This backward approach helps in minimizing the levels and reserves required for each

92

Γ ⊢ e : T Under context Γ, e has type T . Γ ⊢ s : Γ′ Under context Γ, s produces context Γ′.

Γ ⊢ e : cipher(ρ) ρ′ ≤ ρ

Γ ⊢ e : cipher(ρ′)
(Sub)

Γ, v : T ⊢ s : Γ′ Γ′ ⊢ e : T ′

Γ ⊢ func fid (v : T) {s; ret e} : T → T ′
(Func)

Γ ⊢ e1 : cipher(ρ) Γ ⊢ e2 : real

Γ ⊢ e1 + e2 : cipher(ρ)
(PAdd)

Γ ⊢ e : cipher(ρ)

Γ ⊢ rotate(e, i) : cipher(ρ) (Rot)

Γ ⊢ c : real
(Const)

Γ ⊢ e1 : cipher(ρ) Γ ⊢ e2 : cipher(ρ)

Γ ⊢ e1 + e2 : cipher(ρ)
(Add)

Γ ⊢ e : T

Γ ⊢ −e : T
(Neg)

Γ ⊢ e1 : cipher(ρ+ ω) Γ ⊢ e2 : real

Γ ⊢ e1 × e2 : cipher(ρ)
(PMul)

Γ ⊢ e1 : cipher(ρ1) Γ ⊢ e2 : cipher(ρ2) l = ⌈ρ1 + ω⌉ = ⌈ρ2 + ω⌉ ρ1 + ρ2 = ρ+ l

Γ ⊢ e1 × e2 : cipher(ρ)
(Mul)

Figure 6.3: Typing rules of reserve type system reproduced from [30]. W means the minimal
scale required by rescale operation.

operation. Finally, the reserve redistribution (§6.4.3) reallocates reserves to prioritize chains

of heavy operations, further reducing their operational levels.

Finally, this work introduces a new rescale placement algorithm (§6.5) that optimizes the

placement of scale management operations to enhance performance. Initially using default

positions determined by the outcomes of reserve allocation, the algorithm then adjusts these

locations by lifting scale management operations to more cost-effective points based on a

thorough cost analysis.

6.3 Reserve Type System

To streamline the processes of reserve analysis (§6.4) and the rescale placement algorithm

(§6.5), this work introduces a novel reserve type system. The concept of a reserve, which

represents the remaining scale budget needed for future RNS-CKKS operations, facilitates

level reduction and consequently improves latency. Figure 6.3 illustrate the typing rules of

this new reserve type system.

93

In subsequent discussions, this work utilizes logarithmic terms relative to the rescaling

factor R: log-scale waterline (ω = logR W), log-scale scale (µ = logR m), and log-scale

reserve (ρ = logR r) to simplify expressions. Additionally, ⌈x⌉ represents the ceiling function,

and {x} = x+ 1− ⌈x⌉ denotes the fractional part function, where {1} = 1, not 0.

6.3.1 Rationale

A primary motivation for introducing the reserve type is to accurately pinpoint opportunities

for level reduction during reserve analysis. Since the scale of any ciphertext must be greater

than the waterline: m = Q/r > W , the level of the ciphertext must fulfill the condition

Q = Rl ≥W · r (i.e., l ≥ ω + ρ) for any given reserve r and waterline W . The minimal level l

that satisfies this inequality, l = ⌈ω+ρ⌉, is termed the principal level. If a multiplication results

in a different principal level from its operands, it is considered a level-mismatch operation,

necessitating a rescale for its outcome. This formulation allows the reserve analysis to infer

the principal level and the need for rescale solely from its reserve ρ (and a given parameter

ω), thus identifying potential for level reduction.

Another significant reason for adopting the reserve type system is to decouple reserve

analysis from the placement of scale management operations. Since a reserve represents a

scale budget for subsequent operations and an upscale operation can adjust the reserve as

necessary, any larger reserve can represent a smaller one. The introduction of a subtyping

rule (Equation Sub) asserts that a larger reserve is a subtype of a smaller one, allowing the

reserve analysis to bypass explicit scale management operations due to type system-permitted

implicit conversions between types.

94

6.3.2 Typing Rules

Figure 6.3 displays the typing rules for the reserve type system. Here, this work focuses

on discussing the subtyping rule (Equation Sub) and the rule for ciphertext multiplication

(Equation Mul). Unary and addition operations maintain consistent types between operands

and results.

Subtyping: The reserve type system establishes a subtyping rule, Equation Sub, which

abstracts away scale management operations within the type system framework. A cipher

type with a certain reserve r accepts another cipher type with a smaller reserve r′, achievable

by any sequence of scale management operations: upscale, rescale, and modswitch. As

upscale can decrease the reserve as required, any reserve r′ ≤ r (i.e., ρ′ ≤ ρ) qualifies as a

subtype. Reserves remain unchanged by rescale, and modswitch combines upscale and

rescale.

Multiplication: The multiplication typing rule (Equation Mul) integrates both level and

waterline constraints. For operands e1 and e2 with reserves r1 and r2, and result e1 × e2

having reserve r, the condition r1 · r2 = r ·Rl (i.e., ρ1 + ρ2 = ρ+ l) must hold, with l being

the common principal level derived from the waterline constraint (l = ⌈ρ1 + ω⌉ = ⌈ρ2 + ω⌉).

Another multiplication rule (Equation PMul) addresses ciphertext-plaintext multiplication,

presuming the plaintext is encoded at the waterline W (i.e., ρ2 = l − ω).

These typing rules facilitate the backward distribution of reserves, and the detailed

application of these rules in backward analysis is explained in §6.4.2.

6.4 Reserve Analysis

The objective of reserve analysis is to minimize the principal levels to decrease the latency of

each operation. This approach differs from traditional forward analysis, which starts with a

95

fixed input scale and calculates the output scale for each operation. In contrast, backward

reserve analysis begins with a determined output reserve and assesses the necessary input

reserve for each operation. This method allows for direct impact on an operation’s level by

minimizing its reserve, enabling more aggressive level reduction than forward analysis, which

does not adjust individual operation levels.

The core strategy of reserve analysis is to aggressively lower the level of operations that

are latency-intensive (e.g., rotate) by shifting the level mismatch earlier in the program’s

sequence. This process involves prioritizing operations with high latency through allocation

ordering to enhance the effect of level reduction (§6.4.1). It then assigns reserves to ciphertexts

according to this order (§6.4.2) and adjusts the timing of level mismatches through reserve

redistribution (§6.4.3) during the reserve allocation phase.

6.4.1 Allocation Ordering

Allocation ordering sets the sequence for the reserve analysis, emphasizing the processing of

operations that significantly affect total latency. This approach recognizes that the level of a

high-latency operation has a greater impact on overall program performance, and thus, the

reserve allocation should prioritize these operations, especially in managing level mismatches.

This method uses scale management unit that groups operations with similar arithmetic

structure and identical multiplicative depths to streamline analysis and reduce redundancy,

thereby speeding up the process.

To determine which operations to prioritize, the algorithm first calculates the estimated

latency for each operation. Although the operation type and its level typically determine

latency, the exact level isn’t known until after reserve allocation. Consequently, the algorithm

uses an initial estimate based on the multiplicative depth and a predefined waterline, calculated

96

as 1 + depth× ω, representing the minimal level increase for each multiplication, where ω is

derived from the ratio of the waterline to the rescaling factor (ω = logR W).

For instance, considering the operation x3 from the same example in Figure 6.1a, it

has a multiplicative depth of 2. Assuming ω = 1/3 (from 20/60), the level is estimated as

1+ 2× 1/3. The latency cost, interpolated from the latency table, would then be calculated as

44× 1/3 + 92× 2/3 = 76, considering the costs at levels 1 and 2.

After estimating the latencies, the ordering algorithm prioritizes operations based on

their dependencies, particularly emphasizing those that follow a heavy operation, as their

reserves need allocation before that of the heavy operation. This prioritization follows the

longest dependency chain leading from the operation to the program’s output. In case of

equal depths in different chains, operations lower in the chain are prioritized. For operations

of the same depth and type, the algorithm uses the dependency chain of the next heaviest

operation as a tie-breaker.

Figure 6.2b illustrates this ordering. The algorithm identifies the longest dependency

chain for the heaviest operation x2, prioritizing the operations as q > x3 > x2. As x3’s

dependency chain is encompassed within x2’s, it’s skipped, and the algorithm proceeds

to sequence the operations linked to the next heaviest operation, y2, and continues in this

manner.

6.4.2 Reserve Allocation

Following the allocation order determined previously, the reserve allocation process assigns a

reserve value to each ciphertext in the program. It accomplishes this by selecting the highest

incoming reserve value (reserve-in) from its dependencies, effectively choosing the least

restrictive reserve that satisfies all incoming conditions.

97

For instance, Figure 6.2c visualizes how reserves are assigned in a reversed (backward)

dependency graph. In the diagram, the gray numbers indicate incoming and outgoing reserves,

while the black numbers represent the finally assigned reserve for each result. Initially, the

reserve for q is set to 0, and the process for this starting point will be detailed later. As

depicted, x receives two incoming reserve values, 97 and 75, from which the algorithm

selects the higher value, 97, to ensure it satisfies the most restrictive incoming condition.

Subsequently, the reserve allocation uses the typing rules outlined in Figure 6.3 to infer the

outgoing reserve (reserve-out). For operations other than multiplication, the operand reserves

match the result reserve, allowing the algorithm to straightforwardly set the reserve-out equal

to the assigned reserve.

For operations involving multiplication, where the operand reserves often differ from

the result reserve, the algorithm calculates operand reserves based on the result reserve.

Specifically, for plaintext multiplication, it computes the operand reserve as ρop = ρ+ ω for

a given ciphertext reserve ρ. If this operand reserve fails to meet the waterline condition

l ≥ ρop + ω = ρ+ 2ω, indicating a level mismatch, the operation is flagged accordingly.

For ciphertext multiplication, the algorithm determines operand reserves ρ1 and ρ2 based

on the result reserve ρ and the operand level l, which itself depends on the operand reserves.

The equation ρ1+ρ2 = ρ+ l from Equation Mul guides this determination. The algorithm first

finds the level l from ⌈ρ+ l+ 2ω⌉ = ⌈ρ1 + ρ2 + 2ω⌉ ≤ ⌈ρ1 + ω⌉+ ⌈ρ2 + ω⌉ = 2l. By ensuring

l = ⌈ρ+ 2ω⌉, the algorithm achieves this by evenly distributing the reserves to each operand:

ρ1 = ρ2 =
(l + ρ)

2
where l = ⌈ρ+ 2ω⌉

If the operand level ⌈ρ+ 2ω⌉ differs from the result level ⌈ρ+ ω⌉, the operation is marked as

a level-mismatch.

98

Taking q from Figure 6.2c as an example, with a reserve of 0 (ρ = 0/60) and a waterline of

20 (ω = 20/60), this work finds l = ⌈ρ+2ω⌉ = ⌈40/60⌉ = 1. Consequently, ρ1 = ρ2 = (ρ+l)
2 =

30/60, leading to an outgoing reserve of 30. The algorithm then continues this process for

x3, calculating its reserve-in at 30, and determining lx3 = ⌈ρx3 + 2ω⌉ = ⌈30/60 + 40/60⌉ = 2.

This calculation flags x3 as having a level mismatch due to the differences in the calculated

levels.

6.4.3 Reserve Redistribution

The reserve redistribution algorithm aims to eliminate unnecessary level increments introduced

during the reserve allocation phase, which equally divides reserves among operation operands.

Level mismatches occur when the levels of results and operands differ, identified as ⌈ρ+2ω⌉ ≠

⌈ρ+ω⌉. To resolve this, the algorithm reduces the reserve ρ by the fractional overflow {ρ+2ω},

effectively preventing the level mismatch.

The adjusted reserve for a ciphertext must be the highest among its incoming reserve

values, meaning all reserves feeding into it must be less than or equal to ρ− {ρ+ 2ω}.

To correct avoidable level mismatches, the redistribution algorithm inspects each operation

influenced by a level-mismatched multiplication. If an operation, such as addition, cannot

redistribute its reserve, the algorithm recursively searches for a feasible redistribution target

until it achieves the necessary reserve reduction. For ciphertext multiplication operations, the

reserve can be adjusted across operands, where one operand compensates for the mismatch

of the other. Redistribution prioritizes operations based on their computational weight; if the

target operation (where reserves might be increased) is prioritized higher than the mismatched

operation, the reserve increment at the target is constrained to ensure no reserve exceeds its

calculated upper limit (ρredist = ρtarget − ρtarget,user). However, if the redistribution target

99

has lower priority, reserve increases are less restricted, provided they do not alter the principal

level of the operands.

Figure 6.2e shows a scenario where the redistribution target is of lower priority than

the level-mismatched multiplication. In this case, x3 has higher priority than y2, allowing

for reserve redistribution up to the point where it does not change the principal level. The

maximum permissible reserve redistribution in this example is 10, which aligns with the

required redistribution amount of 10 ({ρ+ 2ω} = {30/60 + 2 · 20/60} = 10/60), hence the

redistribution is successful.

Figure 6.2d displays the outcomes of the reserve allocations following the redistribution

adjustments, showing how the operations’ reserves are optimized to prevent unnecessary

level increments while maintaining the operational dependencies and constraints of the

RNS-CKKS scheme.

6.5 Code Generation: Rescale Placement

The rescale placement algorithm includes two main steps: inserting scale management

operations and hoisting rescale operations.

In the first step, the algorithm translates a reserve-typed program into one that complies

with RNS-CKKS constraints, by appropriately placing scale management operations. It

inserts a rescale operation for results of level-mismatched multiplications like x2 and y2

in Figure 6.2f, where the result’s principal level differs from the operand’s principal level.

Additionally, it adds upscale and rescale operations to adjust the scales and levels between

the reserve-in and the ciphertexts, such as for x and y, when their principal levels and

reserves do not match. This step resolves discrepancies in reserve and level due to subtyping

mismatches.

100

The second step, rescale hoisting, involves moving a rescale operation to a later position

if it leads to lower overall latency or cost. The reserve analysis initially places level-mismatched

operations at the earliest possible point in the program. Therefore, any rescale hoisting moves

the operation further down the program flow. The hoisting process begins by evaluating

potential benefits using dynamic programming, considering three cost factors: the increased

levels from hoisting, the original location of the rescale operation, and its new location.

For instance, in Figure 6.2h, hoisting the rescale operation increases the level of s from 1 to

2, adding a cost of 1. The cost from merging two rescale operations into one results in a

savings of 19, leading to a net benefit of 18.

Even if a particular hoisting does not immediately yield benefits, the algorithm retains

the destination rescale as a potential candidate for further hoisting. If a more advantageous

hoisting opportunity arises—one that offsets the current costs—the algorithm will execute

the hoisting. Subsequently, the program is transformed; if the original rescale is used only

once, it can be removed.

6.6 Evaluation of Performance-aware Static Scale Analysis

This research implements the proposed reserve analysis and reserve type system, alongside

code transformations, within the MLIR compiler framework [80]. For the RNS-CKKS

backend, this study employs Microsoft SEAL [23] (Release 3.6.1). The evaluation includes

a comparison with leading frameworks such as EVA [26] and HECATE, focusing on both

compilation time and runtime latency performance. For the benchmarks, this research uses

the same sets as those employed by HECATE, with the addition of a new benchmark,

Lenet-CIFAR (Lenet-C). The evaluations are conducted under the same experimental settings

as described in §4.6.1.

101

6.6.1 Compilation Time

Table 6.2 displays the compilation times for EVA, HECATE, and this work. The column

labeled # op indicates the number of operations in each program, reflecting its size. The # iter

column shows the number of scale management plans explored in HECATE, representing

the program’s complexity. For instance, the MLP program has 462 operations, which is

four times more than LR, but its iteration count is four times smaller. This is because MLP

involves simpler operations like two matrix multiplications and two squarings on a single

input, avoiding operations across different multiplicative depths. In contrast, LR involves

subtractions across different depths and two distinct inputs, necessitating more extensive

exploration of scale management plans. The most complex benchmarks are Lenet-5 and

Lenet-C, with Lenet-C needing slightly fewer iterations but involving more operations.

Compilation time encompasses I/O operations and processing time for scale management

and other optimizations like common subexpression elimination and dead code elimination.

Without iterative exploration, this work achieves an average speedup over HECATE. Most of

this work’s compilation time derives from processing and I/O, with scale management time

accounting for only 0.14% of the total.

Particularly noteworthy are the Lenet-5 and Lenet-C benchmarks, where HECATE takes

a considerable amount of time for scale management. The structure of LeNet, which includes

Convolution, x2, Average Pooling, and Fully Connected layers, results in 11 multiplicative

depths, and operations like rotation and addition occur in Conv, Avg, and FC layers. In our

tests, HECATE identifies over 40 potential places for inserting scale management operations,

requiring brute-force searches exceeding 240 iterations.

Regarding scale management time, this work achieves an average speedup over HECATE,

mainly due to eliminating exploration. The theoretical speedup aligns with the # iter, yet

102

Ta
bl

e
6.

2:
C

om
pi

le
tim

e
of

EV
A

,H
EC

A
TE

,a
nd

th
is

w
or

k,
re

pr
od

uc
ed

fr
om

[3
0]

.(
Sp

ee
du

p
ov

er
H

EC
A

TE
)

B
en

ch
m

ar
ks

#
O

ps
#

Ite
rs

C
om

pi
le

Ti
m

e
(m

s)
Sc

al
e

M
an

ag
em

en
tT

im
e

(m
s)

EV
A

H
EC

A
TE

Th
is

w
or

k
Sp

ee
du

p
EV

A
H

EC
A

TE
Th

is
w

or
k

Sp
ee

du
p

SF
60

55
3

97
.3

1
31

9.
4

94
.1

1
3.

39
x

1.
64

1
21

5.
4

0.
14

05
15

33
x

H
C

D
11

0
73

6
11

1.
5

49
4.

1
10

6.
8

4.
63

x
3.

19
0

39
5.

3
0.

21
51

18
38

x
LR

12
3

26
75

10
6.

2
44

41
10

9.
2

40
.6

6x
2.

94
6

43
86

0.
24

97
17

56
2x

M
R

55
0

33
26

21
5.

4
88

79
21

6.
0

41
.0

6x
5.

32
3

86
88

0.
34

51
25

17
7x

PR
18

3
59

59
12

9.
0

15
76

8
13

0.
7

12
0.

01
x

4.
83

9
15

70
8

0.
40

31
38

96
5x

M
LP

46
2

67
7

23
3.

7
20

74
23

2.
5

8.
92

x
3.

90
3

18
29

0.
23

24
78

68
x

Le
ne

t-5
88

95
14

76
3

68
02

48
2.

7E
3

68
05

70
.9

2x
91

.5
0

47
6.

1E
3

4.
75

28
10

01
69

x
Le

ne
t-C

98
45

13
20

8
73

33
46

9.
3E

3
73

30
64

.0
3x

99
.9

3
46

2.
3E

3
5.

23
85

88
25

3x

103

this work surpasses it. The ratio of actual to theoretical speedup averages at about 5.744x,

thanks to the differences in iteration weight between HECATE, which incorporates multiple

optimization passes in its exploration phase to accurately gauge performance, and this

work, which excludes additional optimizations in scale management. Moreover, this work

outperforms EVA by a factor of 15, largely due to using scale management units similar to

HECATE, which effectively reduces the analysis space.

6.6.2 Performance

Figure 6.4 illustrates the latency of programs compiled by EVA, HECATE, and this work. The

latency data from EVA demonstrates the limitations of its forward analysis, where the scale

management scheme struggles to control level and latency effectively. HECATE illustrates

the benefits of performance-aware optimization, although it incurs high exploration costs.

This work matches the latency performance of HECATE for the same parameters and shows

an average performance improvement over EVA.

Generally, this work parallels HECATE in performance across most parameters. It even

achieves up to an 8.7% better performance on certain parameters in benchmarks such as SF,

HCD, Lenet-5, and Lenet-C. HECATE relies on a hill-climbing method that often converges

to local optima rather than the global optimum, potentially missing more effective scale

management plans. Conversely, this work sometimes shows a slowdown of up to 6.5% on

certain parameters in LR, PR, and MR benchmarks. This discrepancy arises from the latency

associated with rescale operations, where the rescale placement algorithm fails to optimally

hoist rescale operations in scenarios involving multiple uses.

The comparison of program errors compiled by EVA, HECATE, and this work for

two different waterlines is presented in Figure 6.5. HECATE frequently uses downscale

to minimize the scale of each ciphertext. However, reducing the scale can inadvertently

104

0

0.
51

15
25

35
45

Pa
ra

m
et

er

EV
A

He
ca

te
Th

is
 w

or
k

La
te

nc
y(

s)

(a
)S

F

0

0.
51

1.
52

15
25

35
45

Pa
ra

m
et

er

EV
A

He
ca

te
Th

is
 w

or
k

La
te

nc
y(

s)

(b
)H

C
D

0

0.
51

1.
5

15
25

35
45

Pa
ra

m
et

er

EV
A

He
ca

te
Th

is
 w

or
k

La
te

nc
y(

s)

(c
)L

R

0123

15
25

35
45

Pa
ra

m
et

er

EV
A

He
ca

te
Th

is
 w

or
k

La
te

nc
y(

s)

(d
)P

R

0

2.
55

7.
510

15
25

35
45

Pa
ra

m
et

er

EV
A

He
ca

te
Th

is
 w

or
k

La
te

nc
y(

s)

(e
)M

R

0

2.
55

7.
510

15
25

35
45

Pa
ra

m
et

er

EV
A

He
ca

te
Th

is
 w

or
k

La
te

nc
y(

s)

(f
)M

LP

020406080

15
25

35
45

Pa
ra

m
et

er

EV
A

He
ca

te
Th

is
 w

or
k

La
te

nc
y(

s) (g
)L

en
et

-5

0306090

15
25

35
45

Pa
ra

m
et

er

EV
A

He
ca

te
Th

is
 w

or
k

La
te

nc
y(

s) (h
)L

en
et

-C

Fi
gu

re
6.

4:
La

te
nc

y
co

m
pa

ris
on

of
EV

A
,H

EC
A

TE
,a

nd
th

is
w

or
k

fo
ra

se
to

fw
at

er
lin

e
pa

ra
m

et
er

(1
5-

50
),

re
pr

od
uc

ed
fr

om
[3

0]
.

105

-10

-5

0

5

10

SF HCD LR PR MR MLP Lenet-5 Lenet-C

Error(Log) EVA Hecate PaSS

(a) Waterline = 220

-10

-8

-6

-4

-2

0

SF HCD LR PR MR MLP Lenet-5 Lenet-C

Error(Log) EVA Hecate PaSS

(b) Waterline = 240

Figure 6.5: Error comparison of EVA, HECATE, and this work for two different waterlines
(W), reproduced from [30].

106

increase the error, as the noise introduced by RNS-CKKS operations is invariant relative to

the ciphertext scale, and error is defined as noise over scale. In contrast, this work considers

the cascading effect with its reserve analysis, avoiding unnecessary scale reductions unless

they enhance performance. This approach provides more opportunities to increase the scale

of each ciphertext, generally reducing errors without compromising performance. Thus,

surprisingly, this work tends to produce better error rates for the parameters overall.

6.6.3 Performance Improvement Breakdown

Figure 6.6 displays the performance breakdown of the proposed algorithms for two different

waterlines. BA represents the basic implementation of reserve-based backward analysis with-

out scale redistribution (§6.4.3) or rescale placement (§6.5). RA includes scale redistribution

but excludes rescale placement. On average, RA and this work improve performance by 9.1%

and 11.6% over BA for W = 20, and by 7.4% and 19.6% for W = 40, respectively.

The performance gains from each algorithm vary depending on the benchmark type, as

shown in Figure 6.6a and Figure 6.6b. For instance, RA shows no speedup over BA in MLP,

Lenet-5, and Lenet-C. The benefits of RA mainly come from scale redistribution, which is

impactful in scenarios involving multiplications between different ciphertexts. However, in

deep learning benchmarks, many of the multiplications are squarings of the same ciphertext,

which limits the effectiveness of scale redistribution.

Conversely, this work does not exhibit noticeable speedups over RA in the regression

benchmarks LR, MR, and PR. The additional performance improvements in this work come

from rescale placement, which is more effective in scenarios involving additions between

different ciphertexts. Specifically, ciphertext summation is divided into two types: internal

summation, which aggregates data within a single ciphertext and often requires rotation, and

external summation, which combines data from different ciphertexts. The rescale placement

107

0

0.2

0.4

0.6

0.8

1

SF HCD LR PR MR MLP Lenet-5 Lenet-C GMean

BA RA PaSSLatency (Normalize by BA)

(a) Waterline = 220

0

0.2

0.4

0.6

0.8

1

SF HCD LR PR MR MLP Lenet-5 Lenet-C GMean

BA RA PaSSLatency (Normalize by BA)

(b) Waterline = 240

Figure 6.6: Breakdown comparison between backward analysis excepting the reserve redistri-
bution and rescale placement (BA), reserve allocation excepting rescale placement (RA), and
this work, reproduced from [30].

108

strategy tends to be less effective in internal summation scenarios, common in regression

benchmarks, hence the lack of observed speedup in these cases.

6.7 Summary

This work introduces a new performance-aware static scale analysis for RNS-CKKS, called

"reserve analysis." It utilizes the innovative concept of a "reserve" and an accompanying type

system, allowing for separation of the reserve analysis from scale management operations.

With the "reserve allocation" algorithm, this approach statically optimizes scales and levels

for each ciphertext, enhancing efficiency. Additionally, the "rescale placement" algorithm

strategically determines the most effective positions for rescale operations, maximizing

performance.

In comparison to traditional exploration-based scale management, this method achieves

similar performance enhancements (41.8% speedup over conventional conservative static

analysis) and offers 15526× faster scale management time. This streamlined scale management

approach facilitates a broad spectrum of optimizations, such as data layout selection and

bootstrap insertion. Although the proposed algorithms are heuristic—prioritizing satisfactory

solutions with minimal compilation time over exhaustive searches for globally optimal

solutions—they set the stage for significant improvements in homomorphic encryption

optimizations. Future work will explore applying these scale management schemes to global-

level scale optimization in homomorphic encryption, aiming to validate their efficacy and

optimize their implementation further.

109

Chapter 7

CONCLUSION

This dissertation consolidates developments in scale management for fully homomorphic

encryption (FHE) across three pioneering works, each introducing innovative approaches to

optimize computational efficiency and accuracy within RNS-CKKS encryption systems.

7.1 Contributions

The first research details the HECATE compiler framework, which introduces performance-

aware scale management facilitated by a robust type system and innovative scale management

operations, including a newly developed downscale operation. HECATE’s core innovation

lies in its proactive rescaling algorithm and an extensive scale management space explorer

that together reduce computational overhead and dynamically optimize execution pathways.

This approach not only advances the compiler design for FHE but also achieves a remarkable

27.38% speedup over existing methods, significantly enhancing the computational efficiency

of FHE operations.

The second research introduces the Error-Latency-Aware Scale Management (ELASM),

an advanced method that refines scale management by focusing on minimizing error and

latency through an iterative exploration of scale management plans. At the heart of ELASM

is the scale-to-noise ratio (SNR), a novel error-proportional parameter that, along with

fine-grained noise-aware waterlines, broadens the exploration space for scale management.

Implemented in the ELASM compiler, this framework demonstrates superior performance

110

on benchmarks against leading compilers like EVA and HECATE, setting new benchmarks

in the precision and efficiency of homomorphic encryption. ELASM provides 21.3% and

31.2× better latency and error for a given error and latency over HECATE, respectively.

The third research presents a new approach called "reserve analysis," a performance-

aware static scale analysis that utilizes a newly introduced concept of "reserve" and a

corresponding type system to separate reserve analysis from scale management operations.

This method contrasts with traditional exploration-based scale management by offering

similar performance improvements and faster scale management time. The reserve analysis

promotes a range of further optimizations, marking a significant stride toward efficient and

practical homomorphic encryption practices. This method achieves similar performance

enhancements (41.8% speedup over conventional conservative static analysis) and offers

15526× faster scale management time.

7.2 Future Work

FHE compiler can perform several different optimizations to improve the performance

of the FHE application. In the front-end of scale management, scale management can

incorporate range analysis and automatic bootstrapping. By using the exact range analysis,

the error estimation can be improved and thus generate more efficient code. On the other

hand, to support a larger application like ResNet, automatic bootstrapping management is

required. Bootstrapping management and scale management are tightly coupled since scale

management determines the amount of allowed computation without bootstrapping and

bootstrapping management determines the point of reinitialization of a ciphertext. Although

the proposed scale management can easily support bootstrapping, bootstrapping management

is not integrated. Further research on the integration of bootstrapping management and the

proposed scale management can greatly increase the applicability.

111

For the scale management, optimal scale management remains an open issue. Although

the proposed scale management schemes in this work achieve the best error-latency trade-off

and fast compilation, the optimal solution is not known for the scale management problem,

preventing the exact evaluation of the quality of the solution. Because finding the optimal

scale management solution in large FHE program is not viable due to the long compilation

time, the optimal solution can evaluate the quality of the proposed schemes and give the

insight about the better scale management scheme.

In the back-end of scale management, a fine-grained (residue-polynomial-level) code

generation allows further optimization, but it is not addressed well. With fine-grained

code generation, compiler can further optimize the program by hoisting the heavy internal

computation like NTT, especially removing the overhead of scale management operations. By

doing so, scale management schemes can reflect the NTT hoisting for the rescale to reduce

the scale management overhead. Nonetheless, the scheduling and buffer allocation for the

fine-grained FHE computation code is also an open problem.

7.3 Summary

This dissertation consists of three new scale management schemes that provide distinct

insights. Together, these researches present a comprehensive advancement in FHE scale

management, each contributing unique insights and tools that pave the way for future research

in the field. This dissertation not only demonstrates the individual merits of each approach but

also highlights the potential for their integration into a cohesive scale management strategy

that could further revolutionize the landscape of secure cryptographic computation.

112

REFERENCES

[1] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A Survey on Homomorphic

Encryption Schemes: Theory and Implementation,” ACM Comput. Surv., vol. 51, no. 4,

Jul. 2018.

[2] O. Kocabas, T. Soyata, J.-P. Couderc, M. Aktas, J. Xia, and M. Huang, “Assessment

of cloud-based health monitoring using Homomorphic Encryption,” in 2013 IEEE

31st International Conference on Computer Design (ICCD), 2013.

[3] O. Masters et al., “Towards a Homomorphic Machine Learning Big Data Pipeline for

the Financial Services Sector,” in Real World Crypto, 2020.

[4] D. Archer et al., “Applications of homomorphic encryption,” HomomorphicEncryption.

org, Redmond WA, Tech. Rep., 2017.

[5] Ö. Kocabaş and T. Soyata, “Medical data analytics in the cloud using homomorphic

encryption,” in E-Health and Telemedicine: Concepts, Methodologies, Tools, and

Applications, IGI Global, 2016.

[6] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing,

“Manual for Using Homomorphic Encryption for Bioinformatics,” Tech. Rep. MSR-

TR-2015-87, Nov. 2015.

113

[7] J. Salter, IBM completes successful field trials on Fully Homomorphic Encryp-

tion, https : / / arstechnica . com / gadgets / 2020 / 07 / ibm - completes -

successful - field - trials - on - fully - homomorphic - encryption/, Jul.

2020.

[8] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A full rns variant of approximate

homomorphic encryption,” in Selected Areas in Cryptography – SAC 2018, C. Cid

and M. J. Jacobson Jr., Eds., Cham: Springer, 2018, isbn: 978-3-030-10970-7.

[9] C. Gentry, “A Fully Homomorphic Encryption Scheme,” Ph.D. dissertation, Stanford,

CA, USA, 2009, isbn: 9781109444506.

[10] C. Gentry, “Fully Homomorphic Encryption Using Ideal Lattices,” in Proceedings

of the Forty-First Annual ACM Symposium on Theory of Computing, Bethesda, MD,

USA: ACM, 2009.

[11] C. Gentry and S. Halevi, “Implementing Gentry’s Fully-Homomorphic Encryption

Scheme,” vol. 6632, May 2011, isbn: 978-3-642-20464-7.

[12] J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi, “Fully Homomorphic

Encryption over the Integers with Shorter Public Keys,” in Advances in Cryptology –

CRYPTO 2011, vol. 6841, Aug. 2011, isbn: 978-3-642-22791-2.

114

[13] J.-S. Coron, D. Naccache, and M. Tibouchi, “Public Key Compression and Modulus

Switching for Fully Homomorphic Encryption over the Integers,” in Advances in

Cryptology – EUROCRYPT 2012, Apr. 2012.

[14] J. H. Cheon et al., “Batch fully homomorphic encryption over the integers,” in Annual

International Conference on the Theory and Applications of Cryptographic Techniques,

Springer, 2013.

[15] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for arithmetic

of approximate numbers,” in Advances in Cryptology – ASIACRYPT 2017, T. Takagi

and T. Peyrin, Eds., Cham: Springer, 2017, isbn: 978-3-319-70694-8.

[16] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) Fully Homomorphic En-

cryption without Bootstrapping,” in Proceedings of the 3rd Innovations in Theoretical

Computer Science Conference, Cambridge, Massachusetts: ACM, 2012.

[17] J.-S. Coron, T. Lepoint, and M. Tibouchi, “Scale-invariant fully homomorphic en-

cryption over the integers,” in International Workshop on Public Key Cryptography,

Springer, 2014.

[18] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic encryption from

(standard) LWE,” SIAM Journal on Computing, vol. 43, no. 2, 2014.

[19] Z. Brakerski, “Fully homomorphic encryption without modulus switching from

classical GapSVP,” in Annual Cryptology Conference, Springer, 2012.

115

[20] C. Gentry, S. Halevi, and N. P. Smart, “Fully homomorphic encryption with polylog

overhead,” in Annual International Conference on the Theory and Applications of

Cryptographic Techniques, Springer, 2012.

[21] C. Gentry, S. Halevi, and N. P. Smart, “Better bootstrapping in fully homomorphic

encryption,” in International Workshop on Public Key Cryptography, Springer, 2012.

[22] A. Viand, P. Jattke, and A. Hithnawi, “SoK: Fully Homomorphic Encryption Compil-

ers,” in 2021 2021 IEEE Symposium on Security and Privacy (SP), IEEE Computer

Society, May 2021.

[23] Microsoft SEAL (Release 3.5.9), https://github.com/microsoft/SEAL, 2020.

[24] HElib Open-Source HE Library, https://github.com/homenc/HElib, 2020.

[25] FullRNS-HEAAN, https://github.com/KyoohyungHan/FullRNS-HEAAN, 2018.

[26] R. Dathathri, B. Kostova, O. Saarikivi, W. Dai, K. Laine, and M. Musuvathi, “EVA:

An Encrypted Vector Arithmetic Language and Compiler for Efficient Homomorphic

Computation,” in Proceedings of the 41st ACM SIGPLAN Conference on Programming

Language Design and Implementation, London, UK: ACM, 2020, isbn: 978-1-4503-

7613-6.

[27] R. Dathathri et al., “CHET: An Optimizing Compiler for Fully-homomorphic Neural-

network Inferencing,” in Proceedings of the 40th ACM SIGPLAN Conference on

116

Programming Language Design and Implementation, (Phoenix, AZ, USA), New York,

NY, USA: ACM, 2019, isbn: 978-1-4503-6712-7.

[28] Y. Lee et al., “HECATE: Performance-Aware Scale Optimization for Homomoprhic

Encryption Compiler,” in 2022 IEEE/ACM International Symposium on Code Genera-

tion and Optimization (CGO), 2022.

[29] Y. Lee, S. Cheon, D. Kim, D. Lee, and H. Kim, “ELASM: Error-Latency-Aware

Scale Management for Fully Homomorphic Encryption,” in Proceedings of the 32nd

USENIX Conference on Security Symposium, ser. SEC ’23, Anaheim, CA, USA:

USENIX Association, 2023, isbn: 978-1-939133-37-3.

[30] Y. Lee, S. Cheon, D. Kim, D. Lee, and H. Kim, “Performance-aware Scale Analysis with

Reserve for Homomorphic Encryption,” in Proceedings of the 29th ACM International

Conference on Architectural Support for Programming Languages and Operating

Systems, Volume 1, ser. ASPLOS ’24, La Jolla, CA, USA: Association for Computing

Machinery, 2024, pp. 302–317, isbn: 9798400703720.

[31] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption from learning with

errors: Conceptually-simpler, asymptotically-faster, attribute-based,” in Annual Cryp-

tology Conference, Springer, 2013.

[32] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learning with errors

over rings,” in Advances in Cryptology – EUROCRYPT 2010, H. Gilbert, Ed., Berlin,

Heidelberg: Springer, 2010.

117

[33] A. Kim, A. Papadimitriou, and Y. Polyakov, “Approximate homomorphic encryption

with reduced approximation error,” in Cryptographers’ Track at the RSA Conference,

Springer, 2022, pp. 120–144.

[34] F. Boemer, Y. Lao, R. Cammarota, and C. Wierzynski, “nGraph-HE: A Graph Compiler

for Deep Learning on Homomorphically Encrypted Data,” in Proceedings of the 16th

ACM International Conference on Computing Frontiers, (Alghero, Italy), ser. CF ’19,

New York, NY, USA: ACM, 2019, pp. 3–13, isbn: 978-1-4503-6685-4.

[35] F. Boemer, A. Costache, R. Cammarota, and C. Wierzynski, “nGraph-HE2: A

High-Throughput Framework for Neural Network Inference on Encrypted Data,”

in Proceedings of the 7th ACM Workshop on Encrypted Computing & Applied

Homomorphic Cryptography, (London, United Kingdom), ser. WAHC’19, New York,

NY, USA: ACM, 2019, pp. 45–56, isbn: 978-1-4503-6829-2.

[36] PALISADE Lattice Cryptography Library, https://palisade-crypto.org/, Oct.

2020.

[37] HEAAN Open-Source HE Library, https://github.com/snucrypto/HEAAN,

2020.

[38] D. W. Archer et al., “RAMPARTS: A Programmer-Friendly System for Building

Homomorphic Encryption Applications,” in Proceedings of the 7th ACM Workshop

on Encrypted Computing & Applied Homomorphic Cryptography, (London, United

118

Kingdom), ser. WAHC’19, New York, NY, USA: ACM, 2019, pp. 57–68, isbn:

978-1-4503-6829-2.

[39] Cingulata, https://github.com/CEA-LIST/Cingulata, 2020.

[40] S. Carpov, P. Dubrulle, and R. Sirdey, “Armadillo: A compilation chain for privacy

preserving applications,” in Proceedings of the 3rd International Workshop on Security

in Cloud Computing, 2015, pp. 13–19.

[41] D. Lee, W. Lee, H. Oh, and K. Yi, “Optimizing Homomorphic Evaluation Circuits by

Program Synthesis and Term Rewriting,” in Proceedings of the 41st ACM SIGPLAN

Conference on Programming Language Design and Implementation, ser. PLDI 2020,

London, UK: Association for Computing Machinery, 2020, pp. 503–518, isbn:

9781450376136.

[42] A. Viand, P. Jattke, M. Haller, and A. Hithnawi, “HECO: Automatic Code Opti-

mizations for Efficient Fully Homomorphic Encryption,” in 32nd USENIX Security

Symposium (USENIX Security 23), Aneheim, CA: USENIX Association, Aug. 2023.

[43] A. Viand and H. Shafagh, “Marble: Making Fully Homomorphic Encryption Accessible

to All,” in Proceedings of the 6th Workshop on Encrypted Computing; Applied

Homomorphic Cryptography, ser. WAHC ’18, Association for Computing Machinery,

2018.

119

[44] E. Chielle, O. Mazonka, H. Gamil, N. G. Tsoutsos, and M. Maniatakos, E3: A

Framework for Compiling C++ Programs with Encrypted Operands, Cryptology

ePrint Archive, Report 2018/1013, https://ia.cr/2018/1013, 2018.

[45] E. Crockett, C. Peikert, and C. Sharp, “ALCHEMY: A Language and Compiler for

Homomorphic Encryption Made EasY,” in Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security, ser. CCS ’18, Association for

Computing Machinery, 2018.

[46] M. Cowan, D. Dangwal, A. Alaghi, C. Trippel, V. T. Lee, and B. Reagen, “Porcupine:

A Synthesizing Compiler for Vectorized Homomorphic Encryption,” in Proceedings of

the 42nd ACM SIGPLAN International Conference on Programming Language Design

and Implementation, Association for Computing Machinery, 2021, pp. 375–389.

[47] S. Gorantala et al., “A general purpose transpiler for fully homomorphic encryption,”

arXiv preprint arXiv:2106.07893, 2021.

[48] R. Malik, K. Sheth, and M. Kulkarni, “Coyote: A Compiler for Vectorizing Encrypted

Arithmetic Circuits,” in Proceedings of the 28th ACM International Conference on

Architectural Support for Programming Languages and Operating Systems, Volume 3,

ser. ASPLOS 2023, Vancouver, BC, Canada: Association for Computing Machinery,

2023, pp. 118–133, isbn: 9781450399180.

120

[49] S. Cheon et al., “DaCapo: Automatic bootstrapping management for efficient fully

homomorphic encryption,” in 33rd USENIX Security Symposium (USENIX Security

24).

[50] H. Chen, R. Cammarota, F. Valencia, F. Regazzoni, and F. Koushanfar, “AHEC: End-

to-end Compiler Framework for Privacy-preserving Machine Learning Acceleration,”

in 2020 57th ACM/IEEE Design Automation Conference (DAC), 2020.

[51] K. Han and D. Ki, “Better bootstrapping for approximate homomorphic encryption,”

in Topics in Cryptology – CT-RSA 2020, S. Jarecki, Ed., Cham: Springer International

Publishing, 2020, pp. 364–390, isbn: 978-3-030-40186-3.

[52] J.-W. Lee, E. Lee, Y. Lee, Y.-S. Kim, and J.-S. No, “High-precision bootstrapping of rns-

ckks homomorphic encryption using optimal minimax polynomial approximation and

inverse sine function,” in Advances in Cryptology – EUROCRYPT 2021, A. Canteaut

and F.-X. Standaert, Eds., Cham: Springer International Publishing, 2021, pp. 618–647,

isbn: 978-3-030-77870-5.

[53] J.-P. Bossuat, C. Mouchet, J. Troncoso-Pastoriza, and J.-P. Hubaux, “Efficient bootstrap-

ping for approximate homomorphic encryption with non-sparse keys,” in Advances

in Cryptology – EUROCRYPT 2021, A. Canteaut and F.-X. Standaert, Eds., Cham:

Springer International Publishing, 2021, pp. 587–617, isbn: 978-3-030-77870-5.

[54] J.-P. Bossuat, J. Troncoso-Pastoriza, and J.-P. Hubaux, “Bootstrapping for approximate

homomorphic encryption with negligible failure-probability by using sparse-secret

121

encapsulation,” in Applied Cryptography and Network Security, G. Ateniese and

D. Venturi, Eds., Cham: Springer International Publishing, 2022, pp. 521–541, isbn:

978-3-031-09234-3.

[55] J.-W. Lee, E. Lee, Y.-S. Kim, and J.-S. No, “Rotation Key Reduction for Client-Server

Systems of Deep Neural Network on Fully Homomorphic Encryption,” in Advances in

Cryptology – ASIACRYPT 2023, J. Guo and R. Steinfeld, Eds., vol. 14443, Singapore:

Springer Nature Singapore, 2023, pp. 36–68, isbn: 978-981-9987-35-1 978-981-9987-

36-8.

[56] W. Jung, S. Kim, J. H. Ahn, J. H. Cheon, and Y. Lee, “Over 100x Faster Bootstrapping

in Fully Homomorphic Encryption through Memory-centric Optimization with GPUs,”

IACR Transactions on Cryptographic Hardware and Embedded Systems, pp. 114–148,

Aug. 11, 2021.

[57] S. Kim, K. Lee, W. Cho, Y. Nam, J. H. Cheon, and R. A. Rutenbar, “Hardware

Architecture of a Number Theoretic Transform for a Bootstrappable RNS-based Ho-

momorphic Encryption Scheme,” in 2020 IEEE 28th Annual International Symposium

on Field-Programmable Custom Computing Machines (FCCM), May 2020, pp. 56–64.

[58] J. Kim et al., “ARK: Fully Homomorphic Encryption Accelerator with Runtime Data

Generation and Inter-Operation Key Reuse,” presented at the 2022 55th IEEE/ACM

International Symposium on Microarchitecture (MICRO), IEEE Computer Society,

Oct. 1, 2022, pp. 1237–1254, isbn: 978-1-66546-272-3.

122

[59] S. Kim et al., “BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryp-

tion,” in Proceedings of the 49th Annual International Symposium on Computer Archi-

tecture, ser. ISCA ’22, New York, NY, USA: Association for Computing Machinery,

June 11, 2022, pp. 711–725, isbn: 978-1-4503-8610-4.

[60] N. Samardzic et al., “CraterLake: A Hardware Accelerator for Efficient Unbounded

Computation on Encrypted Data,” in Proceedings of the 49th Annual International

Symposium on Computer Architecture, ser. ISCA ’22, New York, NY, USA: Association

for Computing Machinery, June 11, 2022, pp. 173–187, isbn: 978-1-4503-8610-4.

[61] N. Samardzic et al., “F1: A Fast and Programmable Accelerator for Fully Homomorphic

Encryption,” in MICRO-54: 54th Annual IEEE/ACM International Symposium on

Microarchitecture, ser. MICRO ’21, New York, NY, USA: Association for Computing

Machinery, October 17, 2021, pp. 238–252, isbn: 978-1-4503-8557-2.

[62] R. Agrawal et al., “FAB: An FPGA-based Accelerator for Bootstrappable Fully Homo-

morphic Encryption,” in 2023 IEEE International Symposium on High-Performance

Computer Architecture (HPCA), 2023, pp. 882–895.

[63] M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “HEAX: An Architecture for Computing

on Encrypted Data,” in Proceedings of the Twenty-Fifth International Conference on

Architectural Support for Programming Languages and Operating Systems, ser. AS-

PLOS ’20, New York, NY, USA: Association for Computing Machinery, March 13,

2020, pp. 1295–1309, isbn: 978-1-4503-7102-5.

123

[64] R. Agrawal, L. De Castro, C. Juvekar, A. Chandrakasan, V. Vaikuntanathan, and A.

Joshi, “MAD: Memory-Aware Design Techniques for Accelerating Fully Homomorphic

Encryption,” in Proceedings of the 56th Annual IEEE/ACM International Symposium on

Microarchitecture, ser. MICRO ’23, New York, NY, USA: Association for Computing

Machinery, December 8, 2023, pp. 685–697, isbn: 9798400703294.

[65] Y. Yang, H. Zhang, S. Fan, H. Lu, M. Zhang, and X. Li, “Poseidon: Practical

Homomorphic Encryption Accelerator,” in 2023 IEEE International Symposium on

High-Performance Computer Architecture (HPCA), Feb. 2023, pp. 870–881.

[66] J. Kim, S. Kim, J. Choi, J. Park, D. Kim, and J. H. Ahn, “SHARP: A short-word

hierarchical accelerator for robust and practical fully homomorphic encryption,” in

Proceedings of the 50th Annual International Symposium on Computer Architecture,

2023, pp. 1–15.

[67] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE: A low latency

framework for secure neural network inference,” in 27th {USENIX} Security Sympo-

sium ({USENIX} Security 18), 2018, pp. 1651–1669.

[68] Z. Huang, W.-j. Lu, C. Hong, and J. Ding, “Cheetah: Lean and Fast Secure {Two-Party}

Deep Neural Network Inference,” in 31st USENIX Security Symposium (USENIX

Security 22), 2022, pp. 809–826.

124

[69] D. Rathee et al., “CrypTFlow2: Practical 2-party secure inference,” in Proceedings of

the 2020 ACM SIGSAC Conference on Computer and Communications Security, 2020,

pp. 325–342.

[70] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa, “Delphi: A

cryptographic inference system for neural networks,” in Proceedings of the 2020

Workshop on Privacy-Preserving Machine Learning in Practice, 2020, pp. 27–30.

[71] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and R. Sharma, “Cryptflow:

Secure tensorflow inference,” in 2020 IEEE Symposium on Security and Privacy (SP),

IEEE, 2020, pp. 336–353.

[72] A. Wood, K. Najarian, and D. Kahrobaei, “Homomorphic encryption for machine

learning in medicine and bioinformatics,” ACM Computing Surveys (CSUR), vol. 53,

no. 4, pp. 1–35, 2020.

[73] A. Al Badawi et al., “Towards the alexnet moment for homomorphic encryption:

Hcnn, the first homomorphic cnn on encrypted data with gpus,” IEEE Transactions on

Emerging Topics in Computing, vol. 9, no. 3, pp. 1330–1343, 2020.

[74] J.-W. Lee et al., “Privacy-preserving machine learning with fully homomorphic

encryption for deep neural network,” IEEE Access, vol. 10, pp. 30 039–30 054, 2022.

125

[75] E. Lee et al., “Low-complexity deep convolutional neural networks on fully homomor-

phic encryption using multiplexed parallel convolutions,” in International Conference

on Machine Learning, PMLR, 2022, pp. 12 403–12 422.

[76] D. Kim, J. Park, J. Kim, S. Kim, and J. H. Ahn, “HyPHEN: A Hybrid Packing Method

and Its Optimizations for Homomorphic Encryption-based Neural Networks,” IEEE

Access, 2023.

[77] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied

to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,

1998.

[78] M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “HEAX: An Architecture for Computing

on Encrypted Data,” in Proceedings of the Twenty-Fifth International Conference on

Architectural Support for Programming Languages and Operating Systems, Lausanne

Switzerland: ACM, Mar. 9, 2020, pp. 1295–1309, isbn: 978-1-4503-7102-5.

[79] W. K. Hastings, “Monte Carlo Sampling Methods Using Markov Chains and Their

Applications,” Biometrika, vol. 57, no. 1, Apr. 1, 1970.

[80] C. Lattner et al., “MLIR: Scaling Compiler Infrastructure for Domain Specific

Computation,” in 2021 IEEE/ACM International Symposium on Code Generation and

Optimization (CGO), IEEE, 2021, pp. 2–14.

126

국문초록

동형암호를위한오차-성능반영스케일관리컴파일러

고정소수점산술및 SIMD와유사한벡터화기능덕분에 RNS-CKKS는암호화된데이터에

대한 계산을 가능하게 하는 완전 동형 암호화(FHE) 기법 중에서도 프라이버시 보존 머신러닝

서비스를위한인기있는선택지로자리매김했다.이전연구들은 RNS-CKKS의고정소수점산

술에필수적인스케일관리작업을자동화하는데진전을이루었지만,제한된성능향상과정확도

향상을 보였다. 이러한 제한은 사용자가 오류 범위와 지연 시간 사이의 최적의 균형을 탐색하고

최적화할수있는능력을제한했다.

이학위논문은프라이버시보존머신러닝서비스를강화하기위해특히 RNS-CKKS기법을

중심으로완전동형암호화(FHE)분야를진전시키는세가지핵심연구를포함한다.첫번째연

구에서는새로운타입시스템과 "다운스케일"이라는새로운리스케일링작업을활용하여암호문

스케일을최적화하는혁신적인 FHE컴파일러프레임워크인 HECATE를소개했다. HECATE

는 다양한 스케일 관리 계획을 분석하여 기대되는 성능 영향을 평가하고, FHE 애플리케이션

전반에걸쳐최적의리스케일링지점을찾아내어이전접근법보다 27%의속도향상을달성했다.

두번째연구에서는 RNS-CKKS에대한오류및지연시간을고려한스케일관리인 ELASM

기법을 제안했다. 이는 이전 작업들이 출력 오류의 영향을 간과한 한계를 해결했다. 암호문 스

케일을 적극적으로 관리함으로써 ELASM은 오류-지연 비용 함수를 최소화하고, 새로운 스케

일-노이즈비율(SNR)매개변수를도입하며,오류-지연트레이드오프를향상시키기위한노이즈

인식 수위선을 소개했다. 이 접근법은 기존 솔루션들에 비해 머신러닝 및 딥러닝 벤치마크에서

우수한성능을보여주었다.

세 번째 연구에서는 수동 스케일 관리의 어려움과 기존 컴파일러의 비효율성을 극복하기

위해 RNS-CKKS프로그램을위한성능인식정적스케일분석을제안했다.각암호문의스케일

127

"여유분"을 프로그램의 끝에서 역방향으로 분석하고 새로운 타입 시스템을 설계하여 스케일

예산을재분배함으로써,성능인식스케일관리를가능하게했다.

이연구들은발전된컴파일러프레임워크,스케일러관리기법,성능분석기술을통해 FHE

애플리케이션을최적화하는포괄적인접근방식을제시한다.이들은효율적인프라이버시보존

머신러닝 서비스의 가능성을 입증할 뿐만 아니라 암호화된 계산 최적화를 위한 추가 연구의

새로운길을열어주었고,보수적인정적스케일분석접근법보다 41.8%의성능향상을달성하고,

탐색기반방법보다크게개선된스케일관리시간을보여주었다.

핵심되는말:완전동형암호, RNS-CKKS,스케일관리기법,컴파일러,오차-성능반영

128

	Cover Page
	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Fully Homomorphic Encryption Application and Compiler
	Performance-aware Scale Optimization
	Error-Latency-Aware Scale Management
	Performance-aware Static Scale Analysis
	Dissertation Organization

	Background
	RNS-CKKS Encoding and Encryption
	RNS-CKKS Operations and Conditions
	RNS-CKKS Scale Management Compiler
	Other Related Work
	General-purpose HE compilers
	Domain-specific HE compilers
	RNS-CKKS Algorithm and Acceleration
	Privacy-preserving Machine Learning

	HECATE Language and Type Systems
	HECATE Language
	Scale Type Systems
	FHE Operational Semantics
	Type Soundness

	Performance-aware Scale Optimization
	Necessity of Performance-aware Scale Optimization
	Overview of Performance-aware Scale Optimization
	Scale Management Unit Generation
	Scale Management Space Explorer
	Scale Management Planner
	Performance Estimator

	Code Generation: Proactive Rescaling
	Evaluation of Performance-aware Scale Optimization
	Experimental Setup
	Performance Evaluation
	Search Space Reduction
	Performance Estimation

	Summary

	Error-Latency-Aware Scale Management
	Necessity of Error-Latency-Aware Scale Management
	Overview of Error-Latency-Aware Scale Management
	Error-Latency-Aware Scale Management
	SNR: Fine-grained Noise-aware Waterline
	ELASM Compiler Design

	Error-Latency-Aware Scale Management
	Sampling of Scale Management Space
	Noise-aware Waterline Management
	Error Estimation

	Code Generation
	Type System of ELASM
	ELASM Rewriting Rules

	Evaluation of Error-Latency-Aware Scale Management
	Pareto Curve of Error-Latency Trade-off
	Error Estimation
	Error-proportionality of SNR parameter
	Case Study: End-to-end DNN Application

	Summary

	Performance-aware Static Scale Analysis
	Necessity of Performance-aware Static Scale Analysis
	Forward Static Scale Analysis
	Tightly Coupled Scale Management and Analysis
	Exploration-based Scale Management

	Overview of Performance-aware Static Scale Analysis
	Reserve Type System
	Rationale
	Typing Rules

	Reserve Analysis
	Allocation Ordering
	Reserve Allocation
	Reserve Redistribution

	Code Generation: Rescale Placement
	Evaluation of Performance-aware Static Scale Analysis
	Compilation Time
	Performance
	Performance Improvement Breakdown

	Summary

	Conclusion
	Contributions
	Future Work
	Summary

	References
	국문초록

